Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 194624, 12 pages
http://dx.doi.org/10.1155/2015/194624
Research Article

aCGH-MAS: Analysis of aCGH by means of Multiagent System

1Biomedical Research Institute of Salamanca, BISITE Research Group, University of Salamanca, Edificio I+D+i, 37008 Salamanca, Spain
2IBMCC, Cancer Research Center, University of Salamanca-CSIC, 37007 Salamanca, Spain
3Department of Artificial Intelligence, Technical University of Madrid, Campus de Montegancedo, s/n Boadilla del Monte, 28660 Madrid, Spain

Received 21 August 2014; Revised 31 October 2014; Accepted 17 November 2014

Academic Editor: Juan M. Corchado

Copyright © 2015 Juan F. De Paz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Corchado, J. F. De Paz, S. Rodríguez, and J. Bajo, “Model of experts for decision support in the diagnosis of leukemia patients,” Artificial Intelligence in Medicine, vol. 46, no. 3, pp. 179–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. de Paz, J. Bajo, V. Vera, and J. M. Corchado, “MicroCBR: a case-based reasoning architecture for the classification of microarray data,” Applied Soft Computing, vol. 11, no. 8, pp. 4496–4507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Ylstra, P. van den IJssel, B. Carvalho, R. H. Brakenhoff, and G. A. Meijer, “BAC to the future! Or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH),” Nucleic Acids Research, vol. 34, no. 2, pp. 445–450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Pinkel and D. G. Albertson, “Array comparative genomic hybridization and its applications in cancer,” Nature Genetics, vol. 37, no. 6, pp. S11–S17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. K. Mantripragada, P. G. Buckley, T. Diaz de Ståhl, and J. P. Dumanski, “Genomic microarrays in the spotlight,” Trends in Genetics, vol. 20, no. 2, pp. 87–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Wang, Y. Kim, J. Pollack, B. Narasimhan, and R. Tibshirani, “A method for calling gains and losses in array CGH data,” Biostatistics, vol. 6, no. 1, pp. 45–58, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nature Genetics, vol. 21, no. 1, pp. 33–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. W. Choon, M. S. Mohamad, S. Deris, R. M. Illias, C. K. Chong, and L. E. Chai, “A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains,” Bioprocess and Biosystems Engineering, vol. 37, no. 3, pp. 521–532, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. O. C. Lingjærde, L. O. Baumbusch, K. Liestøl, I. K. Glad, and A.-L. Børresen-Dale, “CGH-Explorer: a program for analysis of array-CGH data,” Bioinformatics, vol. 21, no. 6, pp. 821–822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Y. Kim, S. W. Nam, S. H. Lee et al., “ArrayCyGHt: a web application for analysis and visualization of array-CGH data,” Bioinformatics, vol. 21, no. 10, pp. 2554–2555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Chen, F. Erdogan, H.-H. Ropers, S. Lenzner, and R. Ullmann, “CGHPRO—a comprehensive data analysis tool for array CGH,” BMC Bioinformatics, vol. 6, article 85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Xia, M. McClelland, and Y. Wang, “WebArray: An online platform for microarray data analysis,” BMC Bioinformatics, vol. 6, article 306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Menten, F. Pattyn, K. De Preter et al., “ArrayCGHbase: an analysis platform for comparative genomic hybridization microarrays,” BMC Bioinformatics, vol. 6, article 124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. P. la Rosa, E. Viara, P. Hupé et al., “VAMP: visualization and analysis of array-CGH, transcriptome and other molecular profiles,” Bioinformatics, vol. 22, no. 17, pp. 2066–2073, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Zato, J. F. De Paz, F. de la Prieta, and B. Martín, “Supporting system for detecting pathologies,” in Advances in Computational Intelligence, vol. 6692 of Lecture Notes in Computer Science, pp. 669–676, Springer, Berlin, Germany, 2011. View at Google Scholar
  16. M. F. Misman, M. S. Mohamad, S. Deris, and S. Z. M. Hashim, “A group-specific tuning parameter for hybrid of SVM and SCAD in identification of informative genes and pathway,” International Journal of Data Mining and Bioinformatics, vol. 10, no. 2, pp. 146–160, 2014. View at Google Scholar
  17. E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M. Rebollo, “An abstract architecture for virtual organizations: the THOMAS approach,” Knowledge and Information Systems, vol. 29, no. 2, pp. 379–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. L. Smith, J. C. Marioni, T. J. Hardcastle, and N. P. Thorne, snapCGH: Segmentation, Normalization and Processing of aCGH Data Users' Guide, Bioconductor, 2006.
  19. D. Glez-Peña, F. Díaz, J. M. Hernández, J. M. Corchado, and F. Fdez-Riverola, “geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research,” BMC Bioinformatics, vol. 10, article 187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. de Paz, J. Bajo, A. González, S. Rodríguez, and J. M. Corchado, “Combining case-based reasoning systems and support vector regression to evaluate the atmosphere-ocean interaction,” Knowledge and Information Systems, vol. 30, no. 1, pp. 155–177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Y. Hehir-Kwa, M. Egmont-Petersen, I. M. Janssen, D. Smeets, A. G. van Kessel, and J. A. Veltman, “Genome-wide copy number profiling on high-density bacterial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide microarrays: a platform comparison based on statistical power analysis,” DNA Research, vol. 14, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Hixson, E. Laritsky, X. Wang et al., “Comparison between BAC and oligo array platforms in detecting submicroscopic genomic rearrangements,” in Proceedings of the Annual Meeting of the American Society of Human Genetics, p. 239, 2006.
  23. A. E. Oostlander, G. A. Meijer, and B. Ylstra, “Microarray-based comparative genomic hybridization and its applications in human genetics,” Clinical Genetics, vol. 66, no. 6, pp. 488–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. S. Ishkanian, C. A. Malloff, S. K. Watson et al., “A tiling resolution DNA microarray with complete coverage of the human genome,” Nature Genetics, vol. 36, no. 3, pp. 299–303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Hermsen, J. Coffa, Y. G. Meijer et al., “High-resolution analysis of genomic copy number changes,” in Genomics: Essential Methods, John Wiley & Sons, 2010. View at Publisher · View at Google Scholar
  26. H. Willenbrock and J. Fridlyand, “A comparison study: applying segmentation to array CGH data for downstream analyses,” Bioinformatics, vol. 21, no. 22, pp. 4084–4091, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. W. A. Hofmann, A. Weigmann, M. Tauscher et al., “Analysis of array-CGH data using the R and bioconductor software suite,” Comparative and Functional Genomics, vol. 2009, Article ID 201325, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. W. W. Cohen, “Fast effective rule induction,” in Proceedings of the 12th International Conference on Machine Learning, pp. 115–123, Morgan Kaufmann, 1995.
  29. G. Holmes, M. Hall, and E. Prank, “Generating rule sets from model trees,” in Advanced Topics in Artificial Intelligence, vol. 1747/1999 of Lecture Notes in Computer Science, pp. 1–12, Springer, Berlin, Germany, 2007. View at Publisher · View at Google Scholar
  30. R. C. Holte, “Very simple classification rules perform well on most commonly used datasets,” Machine Learning, vol. 11, no. 1, pp. 63–91, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Quinlan, C4.5: Programs For Machine Learning, Morgan Kaufmann Publishers, 1993.
  32. R. O. Duda and P. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, New York, NY, USA, 1973.
  33. D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Machine Learning, vol. 6, no. 1, pp. 37–66, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Glez-Peña, F. Díaz, F. Fdez-Riverola, J. R. Méndez, and J. M. Corchado, “Fuzzy patterns and GCS networks to clustering gene expression data,” Studies in Fuzziness and Soft Computing, vol. 242, pp. 103–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. de Haan, S. Bauerschmidt, R. C. van Schaik, E. Piek, L. M. C. Buydens, and R. Wehrens, “Robust ANOVA for microarray data,” Chemometrics and Intelligent Laboratory Systems, vol. 98, no. 1, pp. 38–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Kruskal and W. Wallis, “Use of ranks in one-criterion variance analysis,” Journalof American Statistics Association, vol. 47, pp. 583–621, 1952. View at Google Scholar
  37. S. Yue and C. Wang, “The influence of serial correlation on the Mann-Whitney test for detecting a shift in median,” Advances in Water Resources, vol. 25, no. 3, pp. 325–333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. F. Kenney and E. S. Keeping, Mathematics of Statistics, part 2, Van Nostrand, Princeton, NJ, USA, 2nd edition, 1951.
  39. http://www.cs.waikato.ac.nz/ml/weka/.
  40. X. Yang, Y. Huang, M. Crowson, J. Li, M. L. Maitland, and Y. A. Lussier, “Kinase inhibition-related adverse events predicted from in vitro kinome and clinical trial data,” Journal of Biomedical Informatics, vol. 43, no. 3, pp. 376–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. G. H. Freeman and J. H. Halton, “Note on an exact treatment of contingency, goodness of fit and other problems of significance,” Biometrika, vol. 38, pp. 141–149, 1951. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  42. T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Fritzke, “A growing neural gas network learns topologies,” in Proceedings of the Advances in Neural Information Processing Systems Conference (NIPS '95), G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7, pp. 625–632, Cambridge, Mass, USA, 1995.
  44. T. Martinetz, “Competitive Hebbian learning rule forms perfectly topology preserving maps,” in ICANN '93: Proceedings of the International Conference on Artificial Neural Networks Amsterdam, The Netherlands 13–16 September 1993, pp. 427–434, Springer, London, UK, 1993. View at Publisher · View at Google Scholar
  45. T. Martinetz and K. Schulten, “A neural-gas network learns topologies,” in Artificial Neural Networks, T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds., pp. 397–402, North-Holland, Amsterdam, The Netherlands, 1991. View at Google Scholar
  46. L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, New York, NY, USA, 1990.
  47. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  48. P. Sneath and R. Sokal, Numerical Taxonomy: The Principles and Practice of Numerical Classification, W. H. Freeman, San Francisco, Calif, USA, 1973.
  49. Y. W. Choon, M. S. Mohamad, S. Deris et al., “Differential bees flux balance analysis with optknock for in silico microbial strains optimization,” PLoS ONE, vol. 9, no. 7, Article ID e102744, 2014. View at Publisher · View at Google Scholar
  50. J. Kolodner, Case-Based Reasoning, Morgan Kaufmann, 1993.