Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 217593, 16 pages
http://dx.doi.org/10.1155/2015/217593
Review Article

Targeted Therapies in Adult B-Cell Malignancies

1Department of Hematology, University Hospital, CHU Saint Eloi, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 05, France
2Université Montpellier I, UFR Médecine, 34396 Montpellier, France

Received 13 March 2015; Revised 3 May 2015; Accepted 5 May 2015

Academic Editor: Haiqing Ma

Copyright © 2015 Jean-François Rossi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Anderson, A. Grillo-Löpez, C. Varns, K. S. Chambers, and N. Hanna, “Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin's B-cell lymphoma,” Biochemical Society Transactions, vol. 25, no. 2, pp. 705–708, 1997. View at Google Scholar · View at Scopus
  2. D. G. Maloney, A. J. Grillo-López, C. A. White et al., “IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma,” Blood, vol. 90, no. 6, pp. 2188–2195, 1997. View at Google Scholar · View at Scopus
  3. M. A. Weiss, “Novel treatment strategies in chronic lymphocytic leukemia,” Current Oncology Reports, vol. 3, no. 3, pp. 217–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. O. W. Press, J. P. Leonard, B. Coiffier, R. Levy, and J. Timmerman, “Immunotherapy of Non-Hodgkin's lymphomas,” Hematology, pp. 221–240, 2001. View at Google Scholar · View at Scopus
  5. J. F. Rossi, “Nowadays, all therapies are targetted. Understanding biology improves disease management,” International Journal of Hematology Research, vol. 1, no. 1, 2015. View at Google Scholar
  6. D. Rodríguez-Pinto, “B cells as antigen presenting cells,” Cellular Immunology, vol. 238, no. 2, pp. 67–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Lim, S. A. Beers, R. R. French, P. W. M. Johnson, M. J. Glennie, and M. S. Cragg, “Anti-CD20 monoclonal antibodies: historical and future perspectives,” Haematologica, vol. 95, no. 1, pp. 135–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. E. Mei, S. Schmidt, and T. Dörner, “Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity,” Arthritis Research and Therapy, vol. 14, supplement 5, article S1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Robak and P. Robak, “Anti-CD37 antibodies for chronic lymphocytic leukemia,” Expert Opinion on Biological Therapy, vol. 14, no. 5, pp. 651–661, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kumar, T. Kimlinger, and W. Morice, “Immunophenotyping in multiple myeloma and related plasma cell disorders,” Best Practice and Research: Clinical Haematology, vol. 23, no. 3, pp. 433–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Caraux, L. Vincent, S. Bouhya et al., “Residual malignant and normal plasma cells shortly after high dose melphalan and stem cell transplantation. Highlight of a putative therapeutic window in Multiple Myeloma?” Oncotarget, vol. 3, no. 11, pp. 1335–1347, 2012. View at Google Scholar · View at Scopus
  12. E. Vacchelli, F. Aranda, A. Eggermont et al., “Trial Watch: tumor-targeting monoclonal antibodies in cancer therapy,” OncoImmunology, vol. 3, no. 1, Article ID e27048, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Golay, M. Lazzari, V. Facchinetti et al., “CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59,” Blood, vol. 98, no. 12, pp. 3383–3389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Cooper and D. M. Arnold, “The effect of rituximab on humoral and cell mediated immunity and infection in the treatment of autoimmune diseases,” British Journal of Haematology, vol. 149, no. 1, pp. 3–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Gea-Banacloche, “Rituximab-associated infections,” Seminars in Hematology, vol. 47, no. 2, pp. 187–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Quartuccio, S. Lombardi, M. Fabris et al., “Long-term effects of rituximab in rheumatoid arthritis: clinical, biologic, and pharmacogenetic aspects: review,” Annals of the New York Academy of Sciences, vol. 1173, pp. 692–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. Rossi, B. Caumes, E. Tuaillon et al., “Immune response to a vaccination against H1N1 influenzae virus for patients with untreated chronic lymphocytic leukemia of B-cell type,” Submitted.
  18. S. Auger-Quittet, Y. Duny, J. P. Daures, and P. Quittet, “Treatment with yttrium-90 (90Y)-Ibritumomab tiuxetan (Zevalin) in diffuse large B-cell lymphoma: a meta-analysis,” In press.
  19. Z. Zimmerman, T. Maniar, and D. Nagorsen, “Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE(R)) antibody construct blinatumomab as a potential therapy,” International Immunology, vol. 27, no. 1, pp. 31–37, 2014. View at Publisher · View at Google Scholar
  20. B. Jena, J. S. Moyes, H. Huls, and L. J. N. Cooper, “Driving CAR-based T-cell therapy to success,” Current Hematologic Malignancy Reports, vol. 9, no. 1, pp. 50–56, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. B. W. Grant, S.-H. Jung, J. L. Johnson et al., “A phase 2 trial of extended induction epratuzumab and rituximab for previously untreated follicular lymphoma: CALGB 50701,” Cancer, vol. 119, no. 21, pp. 3797–3804, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Fayad, F. Offner, M. R. Smith et al., “Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab,” Journal of Clinical Oncology, vol. 31, no. 5, pp. 573–583, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Sullivan-Chang, R. T. O'Donnell, and J. M. Tuscano, “Targeting CD22 in B-cell malignancies: current status and clinical outlook,” BioDrugs, vol. 27, no. 4, pp. 293–304, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Mark, P. Martin, J. P. Leonard, and R. Niesvizky, “Milatuzumab: a promising new agent for the treatment of lymphoid malignancies,” Expert Opinion on Investigational Drugs, vol. 18, no. 1, pp. 99–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. A. Rossi, D. M. Goldenberg, R. Michel, D. L. Rossi, D. J. Wallace, and C.-H. Chang, “Trogocytosis of multiple B-cell surface markers by CD22 targeting with epratuzumab,” Blood, vol. 122, no. 17, pp. 3012–3029, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Liu, L. Li, C. Vos, F. Wang, J. Liu, and S. S. Li, “A comprehensive immunoreceptor phosphotyrosine-based signaling network revealed by reciprocal protein-peptide array screening,” Molecular & Cellular Proteomics, 2015. View at Publisher · View at Google Scholar
  27. J. S. Bezbradica and R. Medzhitov, “Role of ITAM signaling module in signal integration,” Current Opinion in Immunology, vol. 24, no. 1, pp. 58–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Shabani, A. A. Bayat, M. Jeddi-Tehrani et al., “Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor-mediated signalling,” Immunology, vol. 143, no. 3, pp. 341–353, 2014. View at Publisher · View at Google Scholar
  29. D. W. Sherbenou, C. R. Behrens, Y. Su, J. L. Wolf, T. G. Martin III, and B. Liu, “The development of potential antibody-based therapies for myeloma,” Blood Reviews, vol. 29, no. 2, pp. 81–91, 2015. View at Publisher · View at Google Scholar
  30. P. Moreau and C. Touzeau, “Elotuzumab for the treatment of multiple myeloma,” Future Oncology, vol. 10, no. 6, pp. 949–956, 2014. View at Publisher · View at Google Scholar
  31. T. Mark and Y. Khagi, “Potential role of daratumumab in the treatment of multiple myeloma,” OncoTargets and Therapy, vol. 7, pp. 1095–1100, 2014. View at Publisher · View at Google Scholar
  32. J. Wijdenes, W. C. Vooijs, C. Clément et al., “A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1,” British Journal of Haematology, vol. 94, no. 2, pp. 318–323, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. J. G. Berdeja, “Lorvotuzumab mertansine: antibody-drug-conjugate for CD56+ multiple myeloma,” Frontiers in Bioscience, vol. 19, no. 1, article 163, 2014. View at Publisher · View at Google Scholar
  34. P. Challagundla, L. J. Medeiros, R. Kanagal-Shamanna, R. N. Miranda, and J. L. Jorgensen, “Differential expression of CD200 in B-cell neoplasms by flow cytometry can assist in diagnosis, subclassification, and bone marrow staging,” American Journal of Clinical Pathology, vol. 142, no. 6, pp. 837–844, 2014. View at Publisher · View at Google Scholar
  35. A. Martner, F. B. Thorén, J. Aurelius, and K. Hellstrand, “Immunotherapeutic strategies for relapse control in acute myeloid leukemia,” Blood Reviews, vol. 27, no. 5, pp. 209–216, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Mahtouk, F. W. Cremer, T. Rème et al., “Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma,” Oncogene, vol. 25, no. 54, pp. 7180–7191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Rousseau, L. Ferrer, S. Supiot et al., “Dosimetry results suggest feasibility of radioimmunotherapy using anti-CD138 (B-B4) antibody in multiple myeloma patients,” Tumor Biology, vol. 33, no. 3, pp. 679–688, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. K. C. Anderson, “The 39th David A. Karnofsky lecture: bench-to-bedside translation of targeted therapies in multiple myeloma,” Journal of Clinical Oncology, vol. 30, no. 4, pp. 445–452, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Jackson and S. F. Elsawa, “Factors regulating immunoglobulin production by normal and disease-associated plasma cells,” Biomolecules, vol. 5, no. 1, pp. 20–40, 2015. View at Publisher · View at Google Scholar
  40. M. Tsuneto, E. Kajikhina, K. Seiler et al., “Reprint of: Environments of B cell development,” Immunology Letters, vol. 160, pp. 109–112, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Mukhopadhyay, J. Ni, Y. Zhai, G.-L. Yu, and B. B. Aggarwal, “Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-κB, and c-jun NH2-terminal kinase,” The Journal of Biological Chemistry, vol. 274, no. 23, pp. 15978–15981, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Mackay, P. Schneider, P. Rennert, and J. Browning, “BAFF and APRIL: a tutorial on B cell survival,” Annual Review of Immunology, vol. 21, pp. 231–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. R. M. Reijmers, M. Spaargaren, and S. T. Pals, “Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma,” FEBS Journal, vol. 280, no. 10, pp. 2180–2193, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Moreaux, E. Legouffe, E. Jourdan et al., “BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone,” Blood, vol. 103, no. 8, pp. 3148–3157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Yaccoby, A. Pennisi, X. Li et al., “Atacicept (TACI-Ig) inhibits growth of TACIhigh primary myeloma cells in SCID-hu mice and in coculture with osteoclasts,” Leukemia, vol. 22, no. 2, pp. 406–413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J.-F. Rossi, “Phase I study of atacicept in relapsed/refractory multiple myeloma (MM) and Waldenström's macroglobulinemia,” Clinical Lymphoma, Myeloma & Leukemia, vol. 11, no. 1, pp. 136–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J.-F. Rossi, J. Moreaux, D. Hose et al., “Atacicept in relapsed/refractory multiple myeloma or active Waldenström's macroglobulinemia: a phase I study,” British Journal of Cancer, vol. 101, no. 7, pp. 1051–1058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H.-P. Hartung and B. C. Kieseier, “Atacicept: targeting B cells in multiple sclerosis,” Therapeutic Advances in Neurological Disorders, vol. 3, no. 4, pp. 205–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. F. Rossi, Z. Y. Lu, M. Jourdan, and B. Klein, “Interleukin-6 as a therapeutic target,” Clinical Cancer Research, vol. 21, no. 6, pp. 1248–1257, 2015. View at Publisher · View at Google Scholar
  50. B. M. Birmann, M. L. Neuhouser, B. Rosner et al., “Prediagnosis biomarkers of insulin-like growth factor-1, insulin, and interleukin-6 dysregulation and multiple myeloma risk in the Multiple Myeloma Cohort Consortium,” Blood, vol. 120, no. 25, pp. 4929–4937, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Scartozzi, M. Bianconi, E. MacCaroni, R. Giampieri, R. Berardi, and S. Cascinu, “Dalotuzumab, a recombinant humanized mab targeted against IGFR1 for the treatment of cancer,” Current Opinion in Molecular Therapeutics, vol. 12, no. 3, pp. 361–371, 2010. View at Google Scholar · View at Scopus
  52. L. Bieghs, S. Lub, K. Fostier et al., “The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic,” Oncotarget, vol. 5, no. 22, pp. 11193–11208, 2014. View at Google Scholar
  53. G. J. Morgan, B. A. Walker, and F. E. Davies, “The genetic architecture of multiple myeloma,” Nature Reviews Cancer, vol. 12, no. 5, pp. 335–348, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. J. M. Dal Porto, S. B. Gauld, K. T. Merrell, D. Mills, A. E. Pugh-Bernard, and J. Cambier, “B cell antigen receptor signaling 101,” Molecular Immunology, vol. 41, no. 6-7, pp. 599–613, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Aalipour and R. H. Advani, “Bruton's tyrosine kinase inhibitors and their clinical potential in the treatment of B-cell malignancies: focus on ibrutinib,” Therapeutic Advances in Hematology, vol. 5, no. 4, pp. 121–133, 2014. View at Publisher · View at Google Scholar
  56. A. Wiestner, “Targeting B-cell receptor signaling for anticancer therapy: the Bruton's tyrosine kinase inhibitor ibrutinib induces impressive responses in B-cell malignancies,” Journal of Clinical Oncology, vol. 31, no. 1, pp. 128–130, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. M. de Rooij, A. Kuil, C. Geest et al., “The clinical active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine- controlled adhesion and migration in chronic lymphocytic leukemia,” Blood, vol. 119, pp. 2590–2594, 2012. View at Publisher · View at Google Scholar
  58. S. O'Brien, R. Furman, S. Coutre et al., “Ibrutinib as an initial therapy for elderly patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: an openlabel, multicentre, phase 1b/2 trial,” The Lancet Oncology, vol. 15, pp. 48–58, 2014. View at Publisher · View at Google Scholar
  59. R. Vij, C. A. Huff, W. L. Bensiger et al., “Ibrutinib, single agent or in combination with dexamethasone, in patients with relapsed or relapsed/refractory multiple myeloma (MM): preliminary Phase 2 results,” in Proceedings of the 56th ASH Annual Meeting and Exposition, Abstract 31, San Francisco, Calif, USA, December 2014.
  60. Y. X. Zhu, E. Braggio, C. X. Shi et al., “Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma,” Blood, vol. 124, no. 4, pp. 536–545, 2014. View at Publisher · View at Google Scholar
  61. R. T. Burke, S. Meadows, M. M. Loriaux et al., “A potential therapeutic strategy for chronic lymphocytic leukemia by combining idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor,” Oncotarget, vol. 5, no. 4, pp. 908–915, 2014. View at Google Scholar · View at Scopus
  62. B. W. Miller, D. Przepiorka, R. A. de Claro et al., “FDA Approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma,” Clinical Cancer Research, vol. 21, no. 7, pp. 1525–1529, 2015. View at Publisher · View at Google Scholar
  63. F. D. Roit, P. J. Engelberts, R. P. Taylor et al., “Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy,” Haematologica, vol. 100, no. 1, pp. 77–86, 2015. View at Publisher · View at Google Scholar
  64. K. Ali, D. R. Soond, R. Pinedo et al., “Inactivation of PI(3)K p110 breaks regulatory T-cell-mediated immune tolerance to cancer,” Nature, vol. 510, pp. 407–411, 2014. View at Google Scholar
  65. M. Malumbres and M. Barbacid, “Cell cycle, CDKs and cancer: a changing paradigm,” Nature Reviews Cancer, vol. 9, no. 3, pp. 153–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. A. Shah and G. K. Schwartz, “Cell cycle-mediated drug resistance: an emerging concept in cancer therapy,” Clinical Cancer Research, vol. 7, no. 8, pp. 2168–2181, 2001. View at Google Scholar · View at Scopus
  67. P. M. Fischer and A. Gianella-Borradori, “Recent progress in the discovery and development of cyclin-dependent kinase inhibitors,” Expert Opinion on Investigational Drugs, vol. 14, no. 4, pp. 457–477, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. G. I. Shapiro, “Cyclin-dependent kinase pathways as targets for cancer treatment,” Journal of Clinical Oncology, vol. 24, no. 11, pp. 1770–1783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Bose, G. L. Simmons, and S. Grant, “Cyclin-dependent kinase inhibitor therapy for hematologic malignancies,” Expert Opinion on Investigational Drugs, vol. 22, no. 6, pp. 723–738, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. L. J. Crawford, B. Walker, and A. E. Irvine, “Proteasome inhibitors in cancer therapy,” Journal of Cell Communication and Signaling, vol. 5, no. 2, pp. 101–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Paiva, M.-B. Vídriales, M.-Á. Montalbán et al., “Multiparameter flow cytometry evaluation of plasma cell DNA content and proliferation in 595 transplant-eligible patients with myeloma included in the Spanish GEM2000 and GEM2005<65y trials,” The American Journal of Pathology, vol. 181, no. 5, pp. 1870–1878, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. Anderson, D. Huang, and A. Roberts, “Targeting BCL2 for the Treatment of Lymphoid Malignancies,” Seminars in Hematology, vol. 51, no. 3, pp. 219–227, 2014. View at Publisher · View at Google Scholar
  73. J. J. Hwang, J. Kuruvilla, D. Mendelson et al., “Phase I dose finding studies of obatoclax (GX15-070), a small molecule Pan-BCL-2 family antagonist, in patients with advanced solid tumors or lymphoma,” Clinical Cancer Research, vol. 16, no. 15, pp. 4038–4045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. T. N. Chonghaile and A. Letai, “Mimicking the BH3 domain to kill cancer cells,” Oncogene, vol. 27, no. 1, pp. S149–S157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. F. Seymour, M. S. Davids, J. M. Pagel et al., “Bcl-2 inhibitor ABT-199 (GDC-0199) monotherapy shows anti-tumor activity including complete remissions in high-risk relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL),” Blood, vol. 122, abstract 872, 2013. View at Google Scholar
  76. Y. Cao, G. Yang, Z. R. Hunter et al., “The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4Wild-type and CXCR4WHIM mutated Waldenstrom macroglobulinaemia cells,” British Journal of Haematology, 2015. View at Publisher · View at Google Scholar
  77. O. Warburg, “On respiratory impairment in cancer cells.,” Science, vol. 124, no. 3215, pp. 269–270, 1956. View at Google Scholar · View at Scopus
  78. R. Z. Yusuf, Y. H. Wang, and D. T. Scadden, “Metabolic priming for AML,” Nature Medicine, vol. 18, pp. 865–867, 2012. View at Publisher · View at Google Scholar
  79. A. Kumar, S. Kant, and S. M. Singh, “Novel molecular mechanisms of antitumor action of dichloroacetate against T cell lymphoma: implication of altered glucose metabolism, pH homeostasis and cell survival regulation,” Chemico-Biological Interactions, vol. 199, no. 1, pp. 29–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. R.-H. Xu, H. Pelicano, Y. Zhou et al., “Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia,” Cancer Research, vol. 65, no. 2, pp. 613–621, 2005. View at Google Scholar · View at Scopus
  81. G. J. Kelloff, J. M. Hoffman, B. Johnson et al., “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clinical Cancer Research, vol. 11, no. 8, pp. 2785–2808, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. S. B. Strum, Ö. Adalsteinsson, R. R. Black, D. Segal, N. L. Peress, and J. Waldenfels, “Case report: sodium dichloroacetate (DCA) inhibition of the ‘warburg Effect’ in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP,” Journal of Bioenergetics and Biomembranes, vol. 45, no. 3, pp. 307–315, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. S. J. Allison, J. R. P. Knight, C. Granchi et al., “Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways,” Oncogenesis, vol. 3, article no. e102, 2014. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Li, Q. Zhang, J. Zhang et al., “Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway,” BMC Cancer, vol. 14, article 96, 2014. View at Publisher · View at Google Scholar · View at Scopus
  85. Z. An, S. Muthusami, J. Yu, and W. Park, “T0070907, a PPAR inhibitor, induced G2/M arrest enhances the effect of radiation in human cervical cancer cells through mitotic catastrophe,” Reproductive Sciences, vol. 21, no. 11, pp. 1352–1361, 2014. View at Publisher · View at Google Scholar
  86. H. Pelicano, D. S. Martin, R. H. Xu, and P. Huang, “Glycolysis inhibition for anticancer treatment,” Oncogene, vol. 25, no. 34, pp. 4633–4646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Ganapathy-Kanniappan and J. F. Geschwind, “Tumor glycolysis as a target for cancer therapy: progress and prospects,” Molecular Cancer, vol. 12, article 152, 2013. View at Publisher · View at Google Scholar
  88. J. R. Doherty and J. L. Cleveland, “Targeting lactate metabolism for cancer therapeutics,” The Journal of Clinical Investigation, vol. 123, no. 9, pp. 3685–3692, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Husain, Y. Huang, P. Seth, and V. P. Sukhatme, “Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells,” Journal of Immunology, vol. 191, no. 3, pp. 1486–1495, 2013. View at Publisher · View at Google Scholar · View at Scopus
  90. S. A. Rosenberg, “Development of cancer immunotherapies based on identification of the genes encoding cancer regression antigens,” Journal of the National Cancer Institute, vol. 88, no. 22, pp. 1635–1644, 1996. View at Publisher · View at Google Scholar · View at Scopus
  91. I. M. Svane and E. M. Verdegaal, “Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care?” Cancer Immunology, Immunotherapy, vol. 63, no. 10, pp. 1081–1091, 2014. View at Publisher · View at Google Scholar
  92. S. S. Dave, G. Wright, B. Tan et al., “Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells,” The New England Journal of Medicine, vol. 351, no. 21, pp. 2159–2169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Canioni, G. Salles, N. Mounier et al., “High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 440–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Raynaud, S. Caulet-Maugendre, C. Foussard et al., “T-cell lymphoid aggregates in bone marrow after rituximab therapy for B-cell follicular lymphoma: a marker of therapeutic efficacy?” Human Pathology, vol. 39, no. 2, pp. 194–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Saifi, A. Maran, P. Raynaud et al., “High ratio of interfollicular CD8/FOXP3-positive regulatory T cells is associated with a high FLIPI index and poor overall survival in follicular lymphoma,” Experimental and Therapeutic Medicine, vol. 1, no. 6, pp. 933–938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. S. Braza, B. Klein, G. Fiol, and J.-F. Rossi, “γδT-cell killing of primary follicular lymphoma cells is dramatically potentiated by GA101, a type II glycoengineered anti-CD20 monoclonal antibody,” Haematologica, vol. 96, no. 3, pp. 400–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Lo Presti, F. Dieli, and S. Meraviglia, “Tumor-Infiltrating γδ T Lymphocytes: pathogenic role, clinical significance, and differential programing in the tumor microenvironment,” Frontiers in Immunology, vol. 5, article 607, 2014. View at Publisher · View at Google Scholar
  98. D. W. Scott and R. D. Gascoyne, “The tumor microenvironment in B cell lymphomas,” Nature Reviews Cancer, vol. 14, pp. 517–534, 2014. View at Publisher · View at Google Scholar
  99. V. Lafont, F. Sanchez, E. Laprevotte et al., “Plasticity of γδ T cells: impact on the anti-tumor response,” Frontiers in Immunology, vol. 5, article 622, 2014. View at Publisher · View at Google Scholar
  100. H. Lu, G. N. Dietsch, M.-A. H. Matthews et al., “VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC,” Clinical Cancer Research, vol. 18, no. 2, pp. 499–509, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Baudard, F. Comte, A. M. Conge, D. Mariano-Goulart, B. Klein, and J. F. Rossi, “Importance of [18F]fluorodeoxyglucose-positron emission tomography scanning for the monitoring of responses to immunotherapy in follicular lymphoma,” Leukemia & Lymphoma, vol. 48, no. 2, pp. 381–388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Wilhelm, V. Kunzmann, S. Eckstein et al., “γδ T cells for immune therapy of patients with lymphoid malignancies,” Blood, vol. 102, no. 1, pp. 200–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Salot, S. Bercegeay, B. Dreno et al., “Large scale expansion of Vγ9Vδ2 T lymphocytes from human peripheral blood mononuclear cells after a positive selection using MACS ‘TCR γ/δ+ T cell isolation kit’,” Journal of Immunological Methods, vol. 347, pp. 12–18, 2009. View at Publisher · View at Google Scholar
  104. M. Burjanadzé, M. Condomines, T. Reme et al., “In vitro expansion of gamma delta T cells with anti-myeloma cell activity by Phosphostim and IL-2 in patients with multiple myeloma,” British Journal of Haematology, vol. 139, no. 2, pp. 206–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Cartron, L. Zhao-Yang, M. Baudard et al., “Granulocyte-macrophage colony-stimulating factor potentiates rituximab in patients with relapsed follicular lymphoma: Results of a phase II study,” Journal of Clinical Oncology, vol. 26, no. 16, pp. 2725–2731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. J. O. J. Davies, K. Stingaris, J. A. Barett, and K. Revzani, “Opportunities and limitations of natural killer cells as adoptive therapy for malignant disease,” Cytotherapy, vol. 16, no. 11, pp. 1453–1466, 2014. View at Publisher · View at Google Scholar
  107. B. Martin-Antonio, A. Najjar, S. N. Robinson et al., “Transmissible cytotoxicity of multiple myeloma cells by cord blood-derived NK cells is mediated by vesicle trafficking,” Cell Death and Differentiation, vol. 22, no. 1, pp. 96–107, 2014. View at Publisher · View at Google Scholar
  108. V. T. Chu and C. Berek, “The establishment of the plasma cell survival niche in the bone marrow,” Immunological Reviews, vol. 251, no. 1, pp. 177–188, 2013. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Jourdan, M. Cren, N. Robert et al., “IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors,” Leukemia, vol. 28, pp. 1647–1656, 2014. View at Publisher · View at Google Scholar · View at Scopus
  110. N. Rohwer, C. Zasada, S. Kempa, and T. Cramer, “The growing complexity of HIF-1α's role in tumorigenesis: DNA repair and beyond,” Oncogene, vol. 32, no. 31, pp. 3569–3576, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Calandra, G. Bridger, and S. Fricker, “CXCR4 in clinical hematology,” Current Topics in Microbiology and Immunology, vol. 341, no. 1, pp. 173–191, 2010. View at Google Scholar · View at Scopus
  112. T.-T. Han, L. Fan, J.-Y. Li, and W. Xu, “Role of chemokines and their receptors in chronic lymphocytic leukemia: function in microenvironment and targeted therapy,” Cancer Biology and Therapy, vol. 15, no. 1, pp. 3–9, 2014. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Bhalla, A. M. Evens, S. Prachand, P. T. Schumacker, and L. I. Gordon, “Paradoxical regulation of hypoxia inducible factor-1α (HIF-1α) by histone deacetylase inhibitor in diffuse large B-cell lymphoma,” PLoS ONE, vol. 8, no. 11, Article ID e81333, 2013. View at Publisher · View at Google Scholar · View at Scopus
  114. P. Weitzenfeld and A. Ben-Baruch, “The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer,” Cancer Letters, vol. 352, pp. 36–53, 2014. View at Publisher · View at Google Scholar · View at Scopus
  115. J. F. Rossi, A. Lamblin, N. Mackenzie, I. Elalamy, and B. Klein, “Low molecular weight heparin in multiple myeloma from thromboprophylaxis to anti-tumor effect,” Submitted to Clinical Lymphoma Myeloma and Leukemia.