Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 276049, 9 pages
http://dx.doi.org/10.1155/2015/276049
Research Article

Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis

1Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing 100730, China
2Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, China

Received 4 June 2014; Accepted 31 October 2014

Academic Editor: Diego Gazzolo

Copyright © 2015 Xiao-Yang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ogilvie, “Adolescent idiopathic scoliosis and genetic testing,” Current Opinion in Pediatrics, vol. 22, no. 1, pp. 67–70, 2010. View at Publisher · View at Google Scholar
  2. E. J. Rogala, D. S. Drummond, and J. Gurr, “Scoliosis: incidence and natural history. A prospective epidemiological study,” Journal of Bone and Joint Surgery—Series A, vol. 60, no. 2, pp. 173–176, 1978. View at Google Scholar · View at Scopus
  3. M. O. Andersen, K. Thomsen, and K. O. Kyvik, “Adolescent idiopathic scoliosis in twins: a population-based survey,” Spine, vol. 32, no. 8, pp. 927–930, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Wise, X. Gao, S. Shoemaker, D. Gordon, and J. A. Herring, “Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood,” Current Genomics, vol. 9, no. 1, pp. 51–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. N. H. Miller, “Genetics of familial idiopathic scoliosis,” Clinical Orthopaedics and Related Research, vol. 462, pp. 6–10, 2007. View at Publisher · View at Google Scholar
  6. N. H. Miller, C. M. Justice, B. Marosy et al., “Identification of candidate regions for familial idiopathic scoliosis,” Spine, vol. 30, no. 10, pp. 1181–1187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sharma, X. Gao, D. Londono et al., “Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes,” Human Molecular Genetics, vol. 20, no. 7, pp. 1456–1466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Esposito, R. Uccello, R. Caliendo et al., “Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human: a possible genetic linkage,” Journal of Steroid Biochemistry and Molecular Biology, vol. 116, no. 1-2, pp. 56–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wu, Y. Qiu, L. Zhang, Q. Sun, X. Qiu, and Y. He, “Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis,” Spine, vol. 31, no. 10, pp. 1131–1136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Takahashi, M. Matsumoto, T. Karasugi et al., “Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population,” Journal of Orthopaedic Research, vol. 29, no. 7, pp. 1055–1058, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. N. L. S. Tang, H. Y. Yeung, K. M. Lee et al., “A relook into the association of the estrogen receptor α gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases,” Spine, vol. 31, no. 21, pp. 2463–2468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. R. W. Carthew and E. J. Sontheimer, “Origins and mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. I. I. G. M. van de Vondervoort, P. M. Gordebeke, N. Khoshab et al., “Long non-coding RNAs in neurodevelopmental disorders,” Frontiers in Molecular Neuroscience, vol. 6, article 53, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. Klattenhoff, J. C. Scheuermann, L. E. Surface et al., “Braveheart, a long noncoding RNA required for cardiovascular lineage commitment,” Cell, vol. 152, no. 3, pp. 570–583, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Taft, K. C. Pang, T. R. Mercer, M. Dinger, and J. S. Mattick, “Non-coding RNAs: regulators of disease,” Journal of Pathology, vol. 220, no. 2, pp. 126–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Gutschner, M. Hämmerle, M. Eißmann et al., “The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells,” Cancer Research, vol. 73, no. 3, pp. 1180–1189, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. D. G. Weber, G. Johnen, S. Casjens et al., “Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer,” BMC Research Notes, vol. 6, no. 1, article 518, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Li, G. Chen, J. Yang et al., “Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure,” PLoS ONE, vol. 8, Article ID e77938, 2013. View at Google Scholar
  19. M. Stuss, P. Rieske, A. Cegłowska et al., “Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis,” Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 5, pp. E1007–E1011, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Nowak, J. Szota, and U. Mazurek, “Vitamin D Receptor gene (VDR) transcripts in bone, cartilage, muscles and blood and microarray analysis of vitamin D responsive genes expression in paravertebral muscles of Juvenile and Adolescent Idiopathic Scoliosis patients,” BMC Musculoskeletal Disorders, vol. 13, article 259, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. L. Weinstein, L. A. Dolan, J. C. Cheng, A. Danielsson, and J. A. Morcuende, “Adolescent idiopathic scoliosis,” The Lancet, vol. 371, no. 9623, pp. 1527–1537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Rinn, M. Kertesz, J. K. Wang et al., “Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs,” Cell, vol. 129, no. 7, pp. 1311–1323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Guttman, I. Amit, M. Garber et al., “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals,” Nature, vol. 458, no. 7235, pp. 223–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Khalil, M. Guttman, M. Huarte et al., “Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 28, pp. 11667–11672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. U. A. Ørom, T. Derrien, M. Beringer et al., “Long noncoding RNAs with enhancer-like function in human cells,” Cell, vol. 143, no. 1, pp. 46–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. Burwell, “Aetiology of idiopathic scoliosis: current concepts,” Pediatric Rehabilitation, vol. 6, no. 3-4, pp. 137–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Yin, D. Guan, Q. Fan et al., “LncRNA expression signatures in response to enterovirus 71 infection,” Biochemical and Biophysical Research Communications, vol. 430, no. 2, pp. 629–633, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Yang, L. Zhang, X.-S. Huo et al., “Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans,” Hepatology, vol. 54, no. 5, pp. 1679–1689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Yang, L. Zhang, X.-S. Huo et al., “Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans,” Hepatology, vol. 54, no. 5, pp. 1679–1689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Cesana, D. Cacchiarelli, I. Legnini et al., “A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA,” Cell, vol. 147, pp. 358–369, 2011. View at Publisher · View at Google Scholar
  31. R. Velázquez-Cruz, H. García-Ortiz, M. Castillejos-López et al., “WNT3A gene polymorphisms are associated with bone mineral density variation in postmenopausal mestizo women of an urban Mexican population: findings of a pathway-based high-density single nucleotide screening,” Age, vol. 36, article 9635, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Nagaoka, R. Ohashi, A. Inutsuka et al., “The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through direct control of N-cadherin,” Cell Reports, vol. 6, pp. 916–927, 2014. View at Publisher · View at Google Scholar
  33. J. N. Collins, B. J. Kirby, J. P. Woodrow et al., “Lactating Ctcgrp nulls lose twice the normal bone mineral content due to fewer osteoblasts and more osteoclasts, whereas bone mass is fully restored after weaning in association with up-regulation of Wnt signaling and other novel genes,” Endocrinology, vol. 154, no. 4, pp. 1400–1413, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Liu, W.-K. Zheng, W.-S. Gao, Y. Shen, and W.-Y. Ding, “Function of TGF-beta and p38 MAKP signaling pathway in osteoblast differentiation from rat adipose-derived stem cells,” European Review for Medical and Pharmacological Sciences, vol. 17, no. 12, pp. 1611–1619, 2013. View at Google Scholar · View at Scopus
  35. C.-C. Niu, S.-S. Lin, L.-J. Yuan et al., “Hyperbaric oxygen treatment suppresses MAPK signaling and mitochondrial apoptotic pathway in degenerated human intervertebral disc cells,” Journal of Orthopaedic Research, vol. 31, no. 2, pp. 204–209, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Plath, S. Mlynarczyk-Evans, D. A. Nusinow, and B. Panning, “Xist RNA and the mechanism of X chromosome inactivation,” Annual Review of Genetics, vol. 36, pp. 233–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. V. Koerner, F. M. Pauler, R. Huang, and D. P. Barlow, “The function of non-coding RNAs in genomic imprinting,” Development, vol. 136, no. 11, pp. 1771–1783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Zhang and D. S. Gilmour, “Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript,” Molecular Cell, vol. 21, no. 1, pp. 65–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. T. J. Loya, T. W. O'Rourke, and D. Reines, “A genetic screen for terminator function in yeast identifies a role for a new functional domain in termination factor Nab3,” Nucleic Acids Research, vol. 40, no. 15, pp. 7476–7491, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Rougemaille, G. Dieppois, E. Kisseleva-Romanova et al., “THO/Sub2p Functions to Coordinate 3′-End Processing with Gene-Nuclear Pore Association,” Cell, vol. 135, no. 2, pp. 308–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Zhang, A. Klatt, A. J. Henderson, and D. S. Gilmour, “Transcription termination factor Pcf11 limits the processivity of Pol II on an HIV provirus to repress gene expression,” Genes & Development, vol. 21, no. 13, pp. 1609–1614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Hoashi, P. J. Cahill, J. T. Bennett, and A. F. Samdani, “Adolescent scoliosis classification and treatment,” Neurosurgery Clinics of North America, vol. 24, no. 2, pp. 173–183, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Qiu, J. Zhang, Y. Wang et al., “A new operative classification of idiopathic scoliosis: a Peking Union Medical College method,” Spine, vol. 30, no. 12, pp. 1419–1426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Smorgick, Y. Mirovsky, K. C. Baker, Y. Gelfer, E. Avisar, and Y. Anekstein, “Predictors of back pain in adolescent idiopathic scoliosis surgical candidates,” Journal of Pediatric Orthopaedics, vol. 33, no. 3, pp. 289–292, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. J. R. Prensner, M. K. Iyer, O. A. Balbin et al., “Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression,” Nature Biotechnology, vol. 29, no. 8, pp. 742–749, 2011. View at Publisher · View at Google Scholar · View at Scopus