Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 286051, 8 pages
http://dx.doi.org/10.1155/2015/286051
Research Article

Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

1Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
2Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
3Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Received 20 October 2014; Revised 22 April 2015; Accepted 22 April 2015

Academic Editor: Kazim Husain

Copyright © 2015 Md. Ibrahim Khalil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Mansour, M. H. Belal, A. A. K. Abou-Arab, and M. F. Gad, “Monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems,” Chemosphere, vol. 75, no. 5, pp. 601–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Halliwell, “Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment,” Drugs and Aging, vol. 18, no. 9, pp. 685–716, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Anversa and E. H. Sonnenblick, “Ischemic cardiomyopathy: pathophysiologic mechanisms,” Progress in Cardiovascular Diseases, vol. 33, no. 1, pp. 49–70, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Radhiga, C. Rajamanickam, S. Senthil, and K. V. Pugalendi, “Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats,” Food and Chemical Toxicology, vol. 50, no. 11, pp. 3971–3977, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Mohanty, D. S. Arya, A. Dinda, K. K. Talwar, S. Joshi, and S. K. Gupta, “Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction,” Basic & Clinical Pharmacology & Toxicology, vol. 94, no. 4, pp. 184–190, 2004. View at Google Scholar · View at Scopus
  6. A. D. Lopez and C. C. J. L. Murrau, “The global burden disease, 1990–2020,” Nature Medicine, vol. 4, no. 11, pp. 1241–1243, 1998. View at Publisher · View at Google Scholar
  7. S. Boudina, M. N. Laclau, L. Tariosse et al., “Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 282, no. 3, pp. H821–H831, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Priscilla and P. S. M. Prince, “Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats,” Chemico-Biological Interactions, vol. 179, no. 2-3, pp. 118–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. O. E. Osadchii, G. R. Norton, R. McKechnie, D. Deftereos, and A. J. Woodiwiss, “Cardiac dilatation and pump dysfunction without intrinsic myocardial systolic failure following chronic β-adrenoreceptor activation,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 4, pp. H1898–H1905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Rona, “Catecholamine cardiotoxicity,” Journal of Molecular and Cellular Cardiology, vol. 17, no. 4, pp. 291–306, 1985. View at Publisher · View at Google Scholar · View at Scopus
  11. N. S. Dhalla, R. M. Temsah, and T. Netticadan, “Role of oxidative stress in cardiovascular diseases,” Journal of Hypertension, vol. 18, no. 6, pp. 655–673, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Rajadurai and P. S. M. Prince, “Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats,” Toxicology, vol. 230, no. 2-3, pp. 178–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Patel, A. Upaganlawar, R. Zalawadia, and R. Balaraman, “Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: a biochemical, electrocardiographic and histoarchitectural evaluation,” European Journal of Pharmacology, vol. 644, no. 1–3, pp. 160–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. G. Topliss, A. M. Clark, E. Ernst et al., “Natural and synthetic substances related to human health (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 74, no. 10, pp. 1957–1985, 2002. View at Google Scholar · View at Scopus
  15. J. W. White, “Composition of honey,” in Honey: A Comprehensive Survey, pp. 157–206, Heinemann, London, UK, 1975. View at Google Scholar
  16. M. I. Khalil and S. A. Sulaiman, “The potential role of honey and its polyphenols in preventing heart diseases: a review,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 7, no. 4, pp. 315–321, 2010. View at Google Scholar · View at Scopus
  17. M. Moniruzzaman, M. I. Khalil, S. A. Sulaiman, and S. H. Gan, “Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera,” BMC Complementary and Alternative Medicine, vol. 13, article 43, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Molan, “The antibacterial activity of honey,” Bee World, vol. 73, no. 2, pp. 59–76, 1992. View at Google Scholar
  19. M. I. Khalil, N. Alam, M. Moniruzzaman, S. A. Sulaiman, and S. H. Gan, “Phenolic acid composition and antioxidant properties of Malaysian honeys,” Journal of Food Science, vol. 76, no. 6, pp. C921–C928, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. I. Khalil, M. Mahaneem, S. M. Jamalullail, N. Alam, and S. A. Sulaiman, “Evaluation of radical scavenging activity and colour intensity of nine Malaysian honeys of different origin,” Journal of ApiProduct & ApiMedical Science, vol. 3, no. 1, pp. 4–11, 2011. View at Publisher · View at Google Scholar
  21. P. V. A. Babu and D. Liu, “Green tea catechins and cardiovascular health: an update,” Current Medicinal Chemistry, vol. 15, no. 18, pp. 1840–1850, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Afroz, E. M. Tanvir, M. F. Hossain et al., “Protective effect of Sundarban honey against acetaminophen-induced acute hepatonephrotoxicity in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 143782, 8 pages, 2014. View at Publisher · View at Google Scholar
  23. O. O. Erejuwa, S. A. Sulaiman, M. S. A. Wahab, K. N. S. Sirajudeen, M. S. Md Salleh, and S. Gurtu, “Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin- induced diabetic rats,” International Journal of Molecular Sciences, vol. 11, no. 5, pp. 2056–2066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. V. S. Panda and S. R. Naik, “Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation,” Experimental and Toxicologic Pathology, vol. 60, no. 4-5, pp. 397–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Publisher · View at Google Scholar · View at Scopus
  26. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  27. A. Upaganlawar, C. Gandhi, and R. Balaraman, “Effect of green tea and vitamin E combination in isoproterenol induced myocardial infarction in rats,” Plant Foods for Human Nutrition, vol. 64, no. 1, pp. 75–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. A. Laine and S. J. Allen, “Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function,” Circulation Research, vol. 68, no. 6, pp. 1713–1721, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. J. E. Johnston, H. A. Sepe, C. L. Miano, R. G. Brannan, and A. L. Alderton, “Honey inhibits lipid oxidation in ready-to-eat ground beef patties,” Meat Science, vol. 70, no. 4, pp. 627–631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Alpert, K. Thygesen, E. Antman, and J. P. Bassand, “Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction,” Journal of the American College of Cardiology, vol. 36, no. 3, pp. 959–969, 2000. View at Google Scholar
  31. G. Saravanan, P. Ponmurugan, M. Sathiyavathi, S. Vadivukkarasi, and S. Sengottuvelu, “Cardioprotective activity of Amaranthus viridis Linn: effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats,” International Journal of Cardiology, vol. 165, no. 3, pp. 494–498, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. M. S. Sabatine, D. A. Morrow, J. A. de Lemos, P. Jarolim, and E. Braunwald, “Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischaemia using an ultrasensitive assay: results from TIMI 35,” European Heart Journal, vol. 30, no. 2, pp. 162–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Mathew, P. V. G. Menon, and P. A. Kurup, “Effect of administration of vitamin A, ascorbic acid and nicotinamide adenine dinucleotide and flavine adenine nucleotide on severity ofmyocardial infarction induced by isoproterenol in rats,” Indian Journal of Experimental Biology, vol. 23, no. 9, pp. 500–504, 1985. View at Google Scholar · View at Scopus
  34. K. H. Sabeena Farvin, R. Anandan, S. H. S. Kumar, K. S. Shiny, T. V. Sankar, and T. K. Thankappan, “Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats,” Pharmacological Research, vol. 50, no. 3, pp. 231–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Salter and D. A. White, “Effects of dietary fat on cholesterol metabolism: regulation of plasma LDL concentrations,” Nutrition Research Reviews, vol. 9, no. 1, pp. 241–257, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Paritha Ithayarasi and C. S. Shyamala Devi, “Effect of α-tocopherol on isoproterenol-induced changes in lipid and lipoprotein profile in rats,” Indian Journal of Pharmacology, vol. 29, no. 6, pp. 399–404, 1997. View at Google Scholar · View at Scopus
  37. E. A. Alagwu, R. O. Nneli, J. N. Egwurugwu, and E. E. Osim, “Gastric cytoprotection and honey intake in albino rats,” Nigerian Journal of Physiological Sciences, vol. 26, no. 1, pp. 39–42, 2011. View at Google Scholar · View at Scopus
  38. M. Rajadurai and P. Stanely Mainzen Prince, “Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences,” Toxicology, vol. 228, no. 2-3, pp. 259–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Zhou, L.-J. Wu, L.-H. Li et al., “Silibinin protects against isoproterenol-induced rat cardiac myocyte injury through mitochondrial pathway after up-regulation of SIRT1,” Journal of Pharmacological Sciences, vol. 102, no. 4, pp. 387–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. K. Rakha, Z. I. Nabil, and A. A. Hussein, “Cardioactive and vasoactive effects of natural wild honey against cardiac malperformance induced by hyperadrenergic activity,” Journal of Medicinal Food, vol. 11, no. 1, pp. 91–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Beretta, M. Orioli, and R. M. Facino, “Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926),” Planta Medica, vol. 73, no. 11, pp. 1182–1189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Jayalakshmi, C. J. Thirupurasundari, and S. N. Devaraj, “Pretreatment with alcoholic extract of shape Crataegus oxycantha (AEC) activates mitochondrial protection during isoproterenol—induced myocardial infarction in rats,” Molecular and Cellular Biochemistry, vol. 292, no. 1-2, pp. 59–67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Chen, B. Siu, Y.-S. Ho et al., “Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice,” Journal of Molecular and Cellular Cardiology, vol. 30, no. 11, pp. 2281–2289, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. O. O. Erejuwa, S. A. Sulaiman, M. S. Wahab, K. N. Sirajudeen, M. S. Salleh, and S. Gurtu, “Impaired Nrf2-ARE pathway contributes to increased oxidative damage in kidney of spontaneously hypertensive rats: effect of antioxidant (honey),” International Journal of Cardiology, vol. 152, p. S45, 2011. View at Google Scholar
  45. M. Kobayashi, L. Li, N. Iwamoto et al., “The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds,” Molecular and Cellular Biology, vol. 29, no. 2, pp. 493–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. O. O. Erejuwa, S. A. Sulaiman, and M. S. Ab Wahab, “Honey: a novel antioxidant,” Molecules, vol. 17, no. 4, pp. 4400–4423, 2012. View at Publisher · View at Google Scholar · View at Scopus