Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 370194, 16 pages
http://dx.doi.org/10.1155/2015/370194
Review Article

Big Data Analytics in Healthcare

1Emergency Medicine Department, University of Michigan, Ann Arbor, MI 48109, USA
2University of Michigan Center for Integrative Research in Critical Care (MCIRCC), Ann Arbor, MI 48109, USA
3Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
4Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Received 5 January 2015; Revised 26 May 2015; Accepted 16 June 2015

Academic Editor: Xia Li

Copyright © 2015 Ashwin Belle et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. McAfee, E. Brynjolfsson, T. H. Davenport, D. J. Patil, and D. Barton, “Big data: the management revolution,” Harvard Business Review, vol. 90, no. 10, pp. 60–68, 2012. View at Google Scholar
  2. C. Lynch, “Big data: how do your data grow?” Nature, vol. 455, no. 7209, pp. 28–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Jacobs, “The pathologies of big data,” Communications of the ACM, vol. 52, no. 8, pp. 36–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, and G. Lapis, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGraw-Hill Osborne Media, 2011.
  5. J. Manyika, M. Chui, B. Brown et al., Big Data: The Next Frontier for Innovation, Competition, and Productivity, McKinsey Global Institute, 2011.
  6. J. J. Borckardt, M. R. Nash, M. D. Murphy, M. Moore, D. Shaw, and P. O'Neil, “Clinical practice as natural laboratory for psychotherapy research: a guide to case-based time-series analysis,” The American Psychologist, vol. 63, no. 2, pp. 77–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. A. Celi, R. G. Mark, D. J. Stone, and R. A. Montgomery, “‘Big data’ in the intensive care unit: closing the data loop,” American Journal of Respiratory and Critical Care Medicine, vol. 187, no. 11, pp. 1157–1160, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Ritter, T. Boskamp, A. Homeyer et al., “Medical image analysis,” IEEE Pulse, vol. 2, no. 6, pp. 60–70, 2011. View at Publisher · View at Google Scholar
  9. J. A. Seibert, “Modalities and data acquisition,” in Practical Imaging Informatics, pp. 49–66, Springer, New York, NY, USA, 2010. View at Publisher · View at Google Scholar
  10. B. J. Drew, P. Harris, J. K. Zègre-Hemsey et al., “Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients,” PLoS ONE, vol. 9, no. 10, Article ID e110274, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. K. C. Graham and M. Cvach, “Monitor alarm fatigue: standardizing use of physiological monitors and decreasing nuisance alarms,” The American Journal of Critical Care, vol. 19, no. 1, pp. 28–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Cvach, “Monitor alarm fatigue: an integrative review,” Biomedical Instrumentation & Technology, vol. 46, no. 4, pp. 268–277, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Rothschild, C. P. Landrigan, J. W. Cronin et al., “The Critical Care Safety Study: the incidence and nature of adverse events and serious medical errors in intensive care,” Critical Care Medicine, vol. 33, no. 8, pp. 1694–1700, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Carayon and A. P. Gürses, “A human factors engineering conceptual framework of nursing workload and patient safety in intensive care units,” Intensive and Critical Care Nursing, vol. 21, no. 5, pp. 284–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Carayon, “Human factors of complex sociotechnical systems,” Applied Ergonomics, vol. 37, no. 4, pp. 525–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at Google Scholar
  17. R. Drmanac, A. B. Sparks, M. J. Callow et al., “Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays,” Science, vol. 327, no. 5961, pp. 78–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Caulfield, J. Evans, A. McGuire et al., “Reflections on the cost of ‘Low-Cost’ whole genome sequencing: framing the health policy debate,” PLoS Biology, vol. 11, no. 11, Article ID e1001699, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. F. E. Dewey, M. E. Grove, C. Pan et al., “Clinical interpretation and implications of whole-genome sequencing,” JAMA, vol. 311, no. 10, pp. 1035–1045, 2014. View at Publisher · View at Google Scholar
  20. L. Hood and S. H. Friend, “Predictive, personalized, preventive, participatory (P4) cancer medicine,” Nature Reviews Clinical Oncology, vol. 8, no. 3, pp. 184–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Hood and M. Flores, “A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory,” New Biotechnology, vol. 29, no. 6, pp. 613–624, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Hood and N. D. Price, “Demystifying disease, democratizing health care,” Science Translational Medicine, vol. 6, no. 225, Article ID 225ed5, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Chen, G. I. Mias, J. Li-Pook-Than et al., “Personal omics profiling reveals dynamic molecular and medical phenotypes,” Cell, vol. 148, no. 6, pp. 1293–1307, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. G. H. Fernald, E. Capriotti, R. Daneshjou, K. J. Karczewski, and R. B. Altman, “Bioinformatics challenges for personalized medicine,” Bioinformatics, vol. 27, no. 13, Article ID btr295, pp. 1741–1748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Khatri, M. Sirota, and A. J. Butte, “Ten years of pathway analysis: current approaches and outstanding challenges,” PLoS Computational Biology, vol. 8, no. 2, Article ID e1002375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Oyelade, J. Soyemi, I. Isewon, and O. Obembe, “Bioinformatics, healthcare informatics and analytics: an imperative for improved healthcare system,” International Journal of Applied Information Systems, vol. 8, no. 5, pp. 1–6, 2015. View at Publisher · View at Google Scholar
  27. T. G. Kannampallil, A. Franklin, T. Cohen, and T. G. Buchman, “Sub-optimal patterns of information use: a rational analysis of information seeking behavior in critical care,” in Cognitive Informatics in Health and Biomedicine, pp. 389–408, Springer, London, UK, 2014. View at Publisher · View at Google Scholar
  28. H. Elshazly, A. T. Azar, A. El-korany, and A. E. Hassanien, “Hybrid system for lymphatic diseases diagnosis,” in Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI '13), pp. 343–347, IEEE, Mysore, India, August 2013. View at Publisher · View at Google Scholar
  29. G. Dougherty, Digital Image Processing for Medical Applications, Cambridge University Press, 2009.
  30. R. C. Gessner, C. B. Frederick, F. S. Foster, and P. A. Dayton, “Acoustic angiography: a new imaging modality for assessing microvasculature architecture,” International Journal of Biomedical Imaging, vol. 2013, Article ID 936593, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Bernatowicz, P. Keall, P. Mishra, A. Knopf, A. Lomax, and J. Kipritidis, “Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: a digital phantom study,” Medical Physics, vol. 42, no. 1, pp. 324–334, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Scholl, T. Aach, T. M. Deserno, and T. Kuhlen, “Challenges of medical image processing,” Computer Science-Research and Development, vol. 26, no. 1-2, pp. 5–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. D. S. Liebeskind and E. Feldmann, “Imaging of cerebrovascular disorders: precision medicine and the collaterome,” Annals of the New York Academy of Sciences, 2015. View at Publisher · View at Google Scholar
  34. T. Hussain and Q. T. Nguyen, “Molecular imaging for cancer diagnosis and surgery,” Advanced Drug Delivery Reviews, vol. 66, pp. 90–100, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Baio, “Molecular imaging is the key driver for clinical cancer diagnosis in the next century!,” Journal of Molecular Imaging & Dynamics, vol. 2, article e102, 2013. View at Publisher · View at Google Scholar
  36. S. Mustafa, B. Mohammed, and A. Abbosh, “Novel preprocessing techniques for accurate microwave imaging of human brain,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 460–463, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. A. H. Golnabi, P. M. Meaney, and K. D. Paulsen, “Tomographic microwave imaging with incorporated prior spatial information,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 2129–2136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Desjardins, T. Crawford, E. Good et al., “Infarct architecture and characteristics on delayed enhanced magnetic resonance imaging and electroanatomic mapping in patients with postinfarction ventricular arrhythmia,” Heart Rhythm, vol. 6, no. 5, pp. 644–651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Hussain, G. Packota, P. W. Major, and C. Flores-Mir, “Role of different imaging modalities in assessment of temporomandibular joint erosions and osteophytes: a systematic review,” Dentomaxillofacial Radiology, vol. 37, no. 2, pp. 63–71, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. C. M. C. Tempany, J. Jayender, T. Kapur et al., “Multimodal imaging for improved diagnosis and treatment of cancers,” Cancer, vol. 121, no. 6, pp. 817–827, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Widmer, R. Schaer, D. Markonis, and H. Müller, “Gesture interaction for content-based medical image retrieval,” in Proceedings of the 4th ACM International Conference on Multimedia Retrieval, pp. 503–506, ACM, April 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file system,” in Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST '10), pp. 1–6, IEEE, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Sobhy, Y. El-Sonbaty, and M. Abou Elnasr, “MedCloud: healthcare cloud computing system,” in Proceedings of the International Conference for Internet Technology and Secured Transactions, pp. 161–166, IEEE, London, UK, December 2012.
  44. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Wang, V. Ercegovac, T. Syeda-Mahmood et al., “Large-scale multimodal mining for healthcare with mapreduce,” in Proceedings of the 1st ACM International Health Informatics Symposium, pp. 479–483, ACM, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. W.-S. Li, J. Yan, Y. Yan, and J. Zhang, “Xbase: cloud-enabled information appliance for healthcare,” in Proceedings of the 13th International Conference on Extending Database Technology (EDBT '10), pp. 675–680, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Markonis, R. Schaer, I. Eggel, H. Muller, and A. Depeursinge, “Using MapReduce for large-scale medical image analysis,” in Proceedings of the 2nd IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology (HISB '12), p. 1, IEEE, San Diego, Calif, USA, September 2012. View at Publisher · View at Google Scholar
  48. K. Shackelford, “System & method for delineation and quantification of fluid accumulation in efast trauma ultrasound images,” US Patent Application, 14/167,448, 2014.
  49. H. Yang, J. Liu, J. Sui, G. Pearlson, and V. D. Calhoun, “A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia,” Frontiers in Human Neuroscience, vol. 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. O. A. J. del Toro and H. Muller, “Multi atlas-based segmentation with data driven refinement,” in Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI '14), pp. 605–608, IEEE, Valencia, Spain, June 2014. View at Publisher · View at Google Scholar
  51. A. Tsymbal, E. Meissner, M. Kelm, and M. Kramer, “Towards cloud-based image-integrated similarity search in big data,” in Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI '14), pp. 593–596, IEEE, Valencia, Spain, June 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Chen, C. Cockrell, K. R. Ward, and K. Najarian, “Intracranial pressure level prediction in traumatic brain injury by extracting features from multiple sources and using machine learning methods,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM '10), pp. 510–515, IEEE, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Weissleder, “Molecular imaging in cancer,” Science, vol. 312, no. 5777, pp. 1168–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Zheng, L. Cao, Q. He, and G. Jin, “Full-range in-plane rotation measurement for image recognition with hybrid digital-optical correlator,” Optical Engineering, vol. 53, no. 1, Article ID 011003, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Ohno-Machado, V. Bafna, A. A. Boxwala et al., “iDASH: integrating data for analysis, anonymization, and sharing,” Journal of the American Medical Informatics Association, vol. 19, no. 2, pp. 196–201, 2012. View at Publisher · View at Google Scholar
  56. C.-T. Yang, L.-T. Chen, W.-L. Chou, and K.-C. Wang, “Implementation of a medical image file accessing system on cloud computing,” in Proceedings of the 13th IEEE International Conference on Computational Science and Engineering (CSE' 10), pp. 321–326, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi, and G. S. Salvador, “A cloud computing solution for patient's data collection in health care institutions,” in Proceedings of the 2nd International Conference on eHealth, Telemedicine, and Social Medicine (ETELEMED '10), pp. 95–99, IEEE, February 2010.
  58. C.-C. Teng, J. Mitchell, C. Walker et al., “A medical image archive solution in the cloud,” in Proceedings of the IEEE International Conference on Software Engineering and Service Sciences (ICSESS '10), pp. 431–434, IEEE, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 80–90, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. J. G. Wolff, “Big data and the SP theory of intelligence,” IEEE Access, vol. 2, pp. 301–315, 2014. View at Publisher · View at Google Scholar
  61. S. W. Jun, K. E. Fleming, M. Adler, and J. Emer, “ZIP-IO: architecture for application-specific compression of Big Data,” in Proceedings of the International Conference on Field-Programmable Technology (FPT '12), pp. 343–351, December 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Jalali and M. H. Asghari, “The anamorphic stretch transform: putting the squeeze on ‘big data’,” Optics and Photonics News, vol. 25, no. 2, pp. 24–31, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Feldman, C. Sung, and D. Rus, “The single pixel GPS: learning big data signals from tiny coresets,” in Proceedings of the 20th International Conference on Advances in Geographic Information Systems (SIGSPATIAL '12), pp. 23–32, ACM, Redondo Beach, Calif, USA, November 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Chiron, M. A. Van Agthoven, B. Kieffer, C. Rolando, and M.-A. Delsuc, “Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 4, pp. 1385–1390, 2014. View at Publisher · View at Google Scholar · View at Scopus
  65. A. C. Gilbert, P. Indyk, M. Iwen, and L. Schmidt, “Recent developments in the sparse fourier transform: a compressed fourier transform for big data,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 91–100, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. W.-Y. Hsu, “Segmentation-based compression: new frontiers of telemedicine in telecommunication,” Telematics and Informatics, vol. 32, no. 3, pp. 475–485, 2015. View at Publisher · View at Google Scholar · View at Scopus
  67. F. P. M. Oliveira and J. M. R. S. Tavares, “Medical image registration: a review,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 17, no. 2, pp. 73–93, 2014. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Qu, F. Long, and H. Peng, “3D registration of biological images and models: registration of microscopic images and its uses in segmentation and annotation,” IEEE Signal Processing Magazine, vol. 32, no. 1, pp. 70–77, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Ulutas, G. Ulutas, and V. V. Nabiyev, “Medical image security and EPR hiding using shamir's secret sharing scheme,” Journal of Systems and Software, vol. 84, no. 3, pp. 341–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Satoh, N. Niki, K. Eguchi et al., “Teleradiology network system on cloud using the web medical image conference system with a new information security solution,” in Medical Imaging : Advanced PACS-based Imaging Informatics and Therapeutic Applications, vol. 8674 of Proceedings of SPIE, International Society for Optics and Photonics, March 2013. View at Publisher · View at Google Scholar
  71. C. K. Tan, J. C. Ng, X. Xu, C. L. Poh, Y. L. Guan, and K. Sheah, “Security protection of DICOM medical images using dual-layer reversible watermarking with tamper detection capability,” Journal of Digital Imaging, vol. 24, no. 3, pp. 528–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Wang, R. Lee, Q. Liu, A. Aji, X. Zhang, and J. Saltz, “Hadoopgis: a high performance query system for analytical medical imaging with mapreduce,” Tech. Rep., Emory University, Atlanta, Ga, USA, 2011. View at Google Scholar
  73. N. Koutsouleris, S. Borgwardt, E. M. Meisenzahl, R. Bottlender, H.-J. Möller, and A. Riecher-Rössler, “Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the fepsy study,” Schizophrenia Bulletin, vol. 38, no. 6, Article ID sbr145, pp. 1234–1246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. K. W. Bowyer, “Validation of medical image analysis techniques,” in Handbook of Medical Imaging, vol. 2, pp. 567–607, 2000. View at Google Scholar
  75. P. Jannin, E. Krupinski, and S. Warfield, “Guest editorial: validation in medical image processing,” IEEE Transactions on Medical Imaging, vol. 25, no. 11, pp. 1405–1409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Popovic, M. de la Fuente, M. Engelhardt, and K. Radermacher, “Statistical validation metric for accuracy assessment in medical image segmentation,” International Journal of Computer Assisted Radiology and Surgery, vol. 2, no. 3-4, pp. 169–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. C. F. Mackenzie, P. Hu, A. Sen et al., “Automatic pre-hospital vital signs waveform and trend data capture fills quality management, triage and outcome prediction gaps,” AMIA Annual Symposium Proceedings, vol. 2008, pp. 318–322, 2008. View at Google Scholar
  78. M. Bodo, T. Settle, J. Royal, E. Lombardini, E. Sawyer, and S. W. Rothwell, “Multimodal noninvasive monitoring of soft tissue wound healing,” Journal of Clinical Monitoring and Computing, vol. 27, no. 6, pp. 677–688, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Hu, S. M. Galvagno Jr., A. Sen et al., “Identification of dynamic prehospital changes with continuous vital signs acquisition,” Air Medical Journal, vol. 33, no. 1, pp. 27–33, 2014. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Apiletti, E. Baralis, G. Bruno, and T. Cerquitelli, “Real-time analysis of physiological data to support medical applications,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 3, pp. 313–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Chen, E. Dougherty, S. S. Demir, C. P. Friedman, C. S. Li, and S. Wong, “Grand challenges for multimodal bio-medical systems,” IEEE Circuits and Systems Magazine, vol. 5, no. 2, pp. 46–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Menachemi, A. Chukmaitov, C. Saunders, and R. G. Brooks, “Hospital quality of care: does information technology matter? The relationship between information technology adoption and quality of care,” Health Care Management Review, vol. 33, no. 1, pp. 51–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. C. M. DesRoches, E. G. Campbell, S. R. Rao et al., “Electronic health records in ambulatory care—a national survey of physicians,” The New England Journal of Medicine, vol. 359, no. 1, pp. 50–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. J. S. McCullough, M. Casey, I. Moscovice, and S. Prasad, “The effect of health information technology on quality in U.S. hospitals,” Health Affairs, vol. 29, no. 4, pp. 647–654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. J. M. Blum, H. Joo, H. Lee, and M. Saeed, “Design and implementation of a hospital wide waveform capture system,” Journal of Clinical Monitoring and Computing, vol. 29, no. 3, pp. 359–362, 2015. View at Publisher · View at Google Scholar
  86. D. Freeman, “The future of patient monitoring,” Health Management Technology, vol. 30, no. 12, article 26, 2009. View at Google Scholar · View at Scopus
  87. B. Muhsin and A. Sampath, “Systems and methods for storing, analyzing, retrieving and displaying streaming medical data,” US Patent 8,310,336, 2012. View at Google Scholar
  88. D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue: an ad hoc sensor network infrastructure for emergency medical care,” in Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, vol. 5, London, UK, 2004.
  89. A. Page, O. Kocabas, S. Ames, M. Venkitasubramaniam, and T. Soyata, “Cloud-based secure health monitoring: optimizing fully-homomorphic encryption for streaming algorithms,” in Proceedings of the IEEE Globecom Workshops (GC Wkshps '14), pp. 48–52, IEEE, Austin, Tex, USA, December 2014. View at Publisher · View at Google Scholar
  90. J. Bange, M. Gryzwa, K. Hoyme, D. C. Johnson, J. LaLonde, and W. Mass, “Medical data transport over wireless life critical network,” US Patent 7,978,062, 2011.
  91. N. Kara and O. A. Dragoi, “Reasoning with contextual data in telehealth applications,” in Proceedings of the 3rd IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMoB '07), p. 69, IEEE, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Li, J. Liu, X. Li, L. Lin, and R. Wei, “A multiple biomedical signals synchronous acquisition circuit based on over-sampling and shaped signal for the application of the ubiquitous health care,” Circuits, Systems, and Signal Processing, vol. 33, no. 10, pp. 3003–3017, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Bar-Or, J. Healey, L. Kontothanassis, and J. M. van Thong, “BioStream: a system architecture for real-time processing of physiological signals,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC' 04), vol. 2, pp. 3101–3104, September 2004. View at Scopus
  94. W. Raghupathi and V. Raghupathi, “Big data analytics in healthcare: promise and potential,” Health Information Science and Systems, vol. 2, article 3, 2014. View at Publisher · View at Google Scholar
  95. S. Ahmad, T. Ramsay, L. Huebsch et al., “Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults,” PLoS ONE, vol. 4, no. 8, Article ID e6642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. A. L. Goldberger, L. A. Amaral, L. Glass et al., “Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. E. J. Siachalou, I. K. Kitsas, K. J. Panoulas et al., “ICASP: an intensive-care acquisition and signal processing integrated framework,” Journal of Medical Systems, vol. 29, no. 6, pp. 633–646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Saeed, C. Lieu, G. Raber, and R. G. Mark, “Mimic ii: a massive temporal icu patient database to support research in intelligent patient monitoring,” in Proceedings of the Computers in Cardiology, pp. 641–644, IEEE, September 2002. View at Scopus
  99. A. Burykin, T. Peck, and T. G. Buchman, “Using ‘off-the-shelf’ tools for terabyte-scale waveform recording in intensive care: computer system design, database description and lessons learned,” Computer Methods and Programs in Biomedicine, vol. 103, no. 3, pp. 151–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Adrián, G. E. Francisco, M. Marcela, A. Baum, L. Daniel, and G. B. de Quirós Fernán, “Mongodb: an open source alternative for HL7-CDA clinical documents management,” in Proceedings of the Open Source International Conference (CISL '13), Buenos Aires, Argentina, 2013.
  101. K. Kaur and R. Rani, “Managing data in healthcare information systems: many models, one solution,” Computer, vol. 48, no. 3, pp. 52–59, 2015. View at Publisher · View at Google Scholar
  102. S. Prasad and M. S. N. Sha, “NextGen data persistence pattern in healthcare: polyglot persistence,” in Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT '13), pp. 1–8, July 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. W. D. Yu, M. Kollipara, R. Penmetsa, and S. Elliadka, “A distributed storage solution for cloud based e-Healthcare Information System,” in Proceedings of the IEEE 15th International Conference on e-Health Networking, Applications & Services (Healthcom ’13), pp. 476–480, Lisbon, Portugal, October 2013. View at Publisher · View at Google Scholar
  104. M. Santos and F. Portela, “Enabling ubiquitous Data Mining in intensive care: features selection and data pre-processing,” in Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS' 11), pp. 261–266, June 2011. View at Scopus
  105. D. J. Berndt, J. W. Fisher, A. R. Hevner, and J. Studnicki, “Healthcare data warehousing and quality assurance,” Computer, vol. 34, no. 12, pp. 28–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. Ö. Uzuner, B. R. South, S. Shen, and S. L. DuVall, “2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text,” Journal of the American Medical Informatics Association, vol. 18, no. 5, pp. 552–556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. B. D. Athey, M. Braxenthaler, M. Haas, and Y. Guo, “tranSMART: an open source and community-driven informatics and data sharing platform for clinical and translational research,” AMIA Summits on Translational Science Proceedings, vol. 2013, pp. 6–8, 2013. View at Google Scholar
  108. M. Saeed, M. Villarroel, A. T. Reisner et al., “Multiparameter intelligent monitoring in intensive care II: a public-access intensive care unit database,” Critical Care Medicine, vol. 39, no. 5, pp. 952–960, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. D. J. Scott, J. Lee, I. Silva et al., “Accessing the public MIMIC-II intensive care relational database for clinical research,” BMC Medical Informatics and Decision Making, vol. 13, no. 1, article 9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Belle, M. A. Kon, and K. Najarian, “Biomedical informatics for computer-aided decision support systems: a survey,” The Scientific World Journal, vol. 2013, Article ID 769639, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. B. S. Bloom, “Crossing the quality chasm: a new health system for the 21st century (committee on quality of health care in America, institute of medicine),” The Journal of the American Medical Association (International Edition), vol. 287, no. 5, p. 645, 2002. View at Google Scholar
  112. S. Eta Berner, “Clinical decision support systems: state of the art,” AHRQ Publication (090069), 2009. View at Google Scholar
  113. H. Han, H. C. Ryoo, and H. Patrick, “An infrastructure of stream data mining, fusion and management for monitored patients,” in Proceedings of the 19th IEEE International Symposium on Computer-Based Medical Systems (CBMS '06), pp. 461–468, IEEE, Salt Lake City, Utah, USA, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Bressan, A. James, and C. McGregor, “Trends and opportunities for integrated real time neonatal clinical decision support,” in Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI '12), pp. 687–690, IEEE, Hong Kong, January 2012. View at Publisher · View at Google Scholar
  115. A. J. E. Seely, A. Bravi, C. Herry et al., “Do heart and respiratory rate variability improve prediction of extubation outcomes in critically ill patients?” Critical Care, vol. 18, no. 2, article R65, 2014. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Attin, G. Feld, H. Lemus et al., “Electrocardiogram characteristics prior to in-hospital cardiac arrest,” Journal of Clinical Monitoring and Computing, vol. 29, no. 3, pp. 385–392, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Lee and R. G. Mark, “A hypotensive episode predictor for intensive care based on heart rate and blood pressure time series,” in Computing in Cardiology, pp. 81–84, IEEE, 2010. View at Google Scholar
  118. J. Sun, D. Sow, J. Hu, and S. Ebadollahi, “A system for mining temporal physiological data streams for advanced prognostic decision support,” in Proceedings of the 10th IEEE International Conference on Data Mining (ICDM' 10), pp. 1061–1066, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Cao, L. Eshelman, N. Chbat, L. Nielsen, B. Gross, and M. Saeed, “Predicting icu hemodynamic instability using continuous multiparameter trends,” in Proceedings of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBS '08), pp. 3803–3806, August 2008. View at Scopus
  120. D. L. Reich, Monitoring in Anesthesia and Perioperative Care, Cambridge University Press, 2011.
  121. A. Smolinska, A.-Ch. Hauschild, R. R. R. Fijten, J. W. Dallinga, J. Baumbach, and F. J. van Schooten, “Current breathomics—a review on data pre-processing techniques and machine learning in metabolomics breath analysis,” Journal of Breath Research, vol. 8, no. 2, Article ID 027105, 2014. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Le Roux, D. K. Menon, G. Citerio et al., “Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care,” Intensive Care Medicine, vol. 40, no. 9, pp. 1189–1209, 2014. View at Publisher · View at Google Scholar · View at Scopus
  123. M. M. Tisdall and M. Smith, “Multimodal monitoring in traumatic brain injury: current status and future directions,” British Journal of Anaesthesia, vol. 99, no. 1, pp. 61–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. J. C. Hemphill, P. Andrews, and M. de Georgia, “Multimodal monitoring and neurocritical care bioinformatics,” Nature Reviews Neurology, vol. 7, no. 8, pp. 451–460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 40, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Winkler, M. Schieber, S. Lücke et al., “A new telemonitoring system intended for chronic heart failure patients using mobile telephone technology—feasibility study,” International Journal of Cardiology, vol. 153, no. 1, pp. 55–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Sow, D. S. Turaga, and M. Schmidt, “Mining of sensor data in healthcare: a survey,” in Managing and Mining Sensor Data, pp. 459–504, Springer, 2013. View at Google Scholar
  128. J. W. Davey, P. A. Hohenlohe, P. D. Etter, J. Q. Boone, J. M. Catchen, and M. L. Blaxter, “Genome-wide genetic marker discovery and genotyping using next-generation sequencing,” Nature Reviews Genetics, vol. 12, no. 7, pp. 499–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. T. J. Treangen and S. L. Salzberg, “Repetitive DNA and next-generation sequencing: computational challenges and solutions,” Nature Reviews Genetics, vol. 13, no. 1, pp. 36–46, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, and E. R. Mardis, “The next-generation sequencing revolution and its impact on genomics,” Cell, vol. 155, no. 1, pp. 27–38, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. Institute of Medicine, Informatics Needs and Challenges in Cancer Research: Workshop Summary, The National Academies Press, Washington, DC, USA, 2012.
  132. E. M. van Allen, N. Wagle, and M. A. Levy, “Clinical analysis and interpretation of cancer genome data,” Journal of Clinical Oncology, vol. 31, no. 15, pp. 1825–1833, 2013. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Tabchy, C. X. Ma, R. Bose, and M. J. Ellis, “Incorporating genomics into breast cancer clinical trials and care,” Clinical Cancer Research, vol. 19, no. 23, pp. 6371–6379, 2013. View at Publisher · View at Google Scholar · View at Scopus
  134. F. Andre, E. Mardis, M. Salm, J. C. Soria, L. L. Siu, and C. Swanton, “Prioritizing targets for precision cancer medicine,” Annals of Oncology, vol. 25, no. 12, pp. 2295–2303, 2014. View at Publisher · View at Google Scholar
  135. G. Karlebach and R. Shamir, “Modelling and analysis of gene regulatory networks,” Nature Reviews Molecular Cell Biology, vol. 9, no. 10, pp. 770–780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Lovén, D. A. Orlando, A. A. Sigova et al., “Revisiting global gene expression analysis,” Cell, vol. 151, no. 3, pp. 476–482, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. J. T. Leek, R. B. Scharpf, H. C. Bravo et al., “Tackling the widespread and critical impact of batch effects in high-throughput data,” Nature Reviews Genetics, vol. 11, no. 10, pp. 733–739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists,” Nucleic Acids Research, vol. 37, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. P. Khatri, S. Draghici, G. C. Ostermeier, and S. A. Krawetz, “Profiling gene expression using Onto-Express,” Genomics, vol. 79, no. 2, pp. 266–270, 2001. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Draghici, P. Khatri, R. P. Martins, G. C. Ostermeier, and S. A. Krawetz, “Global functional profiling of gene expression,” Genomics, vol. 81, no. 2, pp. 98–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Drǎghici, P. Khatri, R. P. Martins, G. C. Ostermeier, and S. A. Krawetz, “Global functional profiling of gene expression,” Genomics, vol. 81, no. 2, pp. 98–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  142. B. R. Zeeberg, W. Feng, G. Wang et al., “GoMiner: a resource for biological interpretation of genomic and proteomic data,” Genome Biology, vol. 4, no. 4, article R28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  143. K. L. Poguegeile, J. A. MacKey, R. D. George et al., “A new microarray, enriched in pancreas and pancreatic cancer cdnas to identify genes relevant to pancreatic cancer,” Cancer Genomics and Proteomics, vol. 1, no. 5-6, pp. 371–386, 2004. View at Google Scholar · View at Scopus
  144. G. Bindea, B. Mlecnik, H. Hackl et al., “Cluego: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks,” Bioinformatics, vol. 25, no. 8, pp. 1091–1093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. G. Bindea, J. Galon, and B. Mlecnik, “CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data,” Bioinformatics, vol. 29, no. 5, pp. 661–663, 2013. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15545–15550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. V. K. Mootha, C. M. Lindgren, K.-F. Eriksson et al., “PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes,” Nature Genetics, vol. 34, no. 3, pp. 267–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Draghici, P. Khatri, A. L. Tarca et al., “A systems biology approach for pathway level analysis,” Genome Research, vol. 17, no. 10, pp. 1537–1545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. M.-H. Teiten, S. Eifes, S. Reuter, A. Duvoix, M. Dicato, and M. Diederich, “Gene expression profiling related to anti-inflammatory properties of curcumin in K562 leukemia cells,” Annals of the New York Academy of Sciences, vol. 1171, pp. 391–398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. I. Thiele, N. Swainston, R. M. T. Fleming et al., “A community-driven global reconstruction of human metabolism,” Nature Biotechnology, vol. 31, no. 5, pp. 419–425, 2013. View at Publisher · View at Google Scholar · View at Scopus
  151. O. Folger, L. Jerby, C. Frezza, E. Gottlieb, E. Ruppin, and T. Shlomi, “Predicting selective drug targets in cancer through metabolic networks,” Molecular Systems Biology, vol. 7, no. 1, 2011. View at Publisher · View at Google Scholar
  152. D. Marbach, J. C. Costello, R. Küffner et al., “Wisdom of crowds for robust gene network inference,” Nature Methods, vol. 9, no. 8, pp. 796–804, 2012. View at Publisher · View at Google Scholar · View at Scopus
  153. R.-S. Wang, A. Saadatpour, and R. Albert, “Boolean modeling in systems biology: an overview of methodology and applications,” Physical Biology, vol. 9, no. 5, Article ID 055001, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. W. Gong, N. Koyano-Nakagawa, T. Li, and D. J. Garry, “Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data,” BMC Bioinformatics, vol. 16, no. 1, article 74, 2015. View at Publisher · View at Google Scholar
  155. K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak, and J. J. Tyson, “Integrative analysis of cell cycle control in budding yeast,” Molecular Biology of the Cell, vol. 15, no. 8, pp. 3841–3862, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. S. Kimura, K. Ide, A. Kashihara et al., “Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm,” Bioinformatics, vol. 21, no. 7, pp. 1154–1163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. J. Gebert, N. Radde, and G.-W. Weber, “Modeling gene regulatory networks with piecewise linear differential equations,” European Journal of Operational Research, vol. 181, no. 3, pp. 1148–1165, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  158. J. N. Bazil, K. D. Stamm, X. Li et al., “The inferred cardiogenic gene regulatory network in the mammalian heart,” PLoS ONE, vol. 9, no. 6, Article ID e100842, 2014. View at Publisher · View at Google Scholar · View at Scopus
  159. B. O. Palsson, Systems Biology, Cambridge University Press, 2006.
  160. D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky, “Revealing strengths and weaknesses of methods for gene network inference,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6286–6291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. N. C. Duarte, S. A. Becker, N. Jamshidi et al., “Global reconstruction of the human metabolic network based on genomic and bibliomic data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 1777–1782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. K. Raman and N. Chandra, “Flux balance analysis of biological systems: applications and challenges,” Briefings in Bioinformatics, vol. 10, no. 4, pp. 435–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. C. S. Henry, M. Dejongh, A. A. Best, P. M. Frybarger, B. Linsay, and R. L. Stevens, “High-throughput generation, optimization and analysis of genome-scale metabolic models,” Nature Biotechnology, vol. 28, no. 9, pp. 977–982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. K. Radrich, Y. Tsuruoka, P. Dobson et al., “Integration of metabolic databases for the reconstruction of genome-scale metabolic networks,” BMC Systems Biology, vol. 4, article 114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. K. Yizhak, T. Benyamini, W. Liebermeister, E. Ruppin, and T. Shlomi, “Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model,” Bioinformatics, vol. 26, no. 12, Article ID btq183, pp. i255–i260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. C. R. Haggart, J. A. Bartell, J. J. Saucerman, and J. A. Papin, “Whole-genome metabolic network reconstruction and constraint-based modeling,” in Methods in Systems Biology, M. Verma, D. Jameson, and H. V. Westerhoff, Eds., vol. 500 of Methods in Enzymology, chapter 21, pp. 411–433, Academic Press, 2011. View at Google Scholar
  167. D. McCloskey, B. Ø. Palsson, and A. M. Feist, “Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli,” Molecular Systems Biology, vol. 9, article 661, 2013. View at Publisher · View at Google Scholar · View at Scopus
  168. E. P. Gianchandani, A. K. Chavali, and J. A. Papin, “The application of flux balance analysis in systems biology,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 2, no. 3, pp. 372–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. N. E. Lewis, H. Nagarajan, and B. O. Palsson, “Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods,” Nature Reviews Microbiology, vol. 10, no. 4, pp. 291–305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  170. W. Zhang, F. Li, and L. Nie, “Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies,” Microbiology, vol. 156, no. 2, pp. 287–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. A. S. Blazier and J. A. Papin, “Integration of expression data in genome-scale metabolic network reconstructions,” Frontiers in Physiology, vol. 3, article 299, 2012. View at Publisher · View at Google Scholar · View at Scopus
  172. P. A. Jensen and J. A. Papin, “Functional integration of a metabolic network model and expression data without arbitrary thresholding,” Bioinformatics, vol. 27, no. 4, pp. 541–547, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. R. L. Chang, L. Xie, L. Xie, P. E. Bourne, and B. Ø. Palsson, “Drug off-target effects predicted using structural analysis in the context of a metabolic network model,” PLoS Computational Biology, vol. 6, no. 9, Article ID e1000938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts, “Inferring regulatory networks from expression data using tree-based methods,” PLoS ONE, vol. 5, no. 9, Article ID e12776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. R. Küffner, T. Petri, P. Tavakkolkhah, L. Windhager, and R. Zimmer, “Inferring gene regulatory networks by ANOVA,” Bioinformatics, vol. 28, no. 10, Article ID bts143, pp. 1376–1382, 2012. View at Publisher · View at Google Scholar · View at Scopus
  176. R. J. Prill, J. Saez-Rodriguez, L. G. Alexopoulos, P. K. Sorger, and G. Stolovitzky, “Crowdsourcing network inference: the dream predictive signaling network challenge,” Science Signaling, vol. 4, no. 189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. T. Saithong, S. Bumee, C. Liamwirat, and A. Meechai, “Analysis and practical guideline of constraint-based boolean method in genetic network inference,” PLoS ONE, vol. 7, no. 1, Article ID e30232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  178. S. Martin, Z. Zhang, A. Martino, and J.-L. Faulon, “Boolean dynamics of genetic regulatory networks inferred from microarray time series data,” Bioinformatics, vol. 23, no. 7, pp. 866–874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  179. J. N. Bazil, F. Qi, and D. A. Beard, “A parallel algorithm for reverse engineering of biological networks,” Integrative Biology, vol. 3, no. 12, pp. 1215–1223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Belle, S.-Y. Ji, W. Chen, T. Huynh, and K. Najarian, “Rule-based computer aided decision making for traumatic brain injuries,” in Machine Learning in Healthcare Informatics, vol. 56, pp. 229–259, Springer, Berlin, Germany, 2014. View at Publisher · View at Google Scholar
  181. I. Yoo, P. Alafaireet, M. Marinov et al., “Data mining in healthcare and biomedicine: a survey of the literature,” Journal of Medical Systems, vol. 36, no. 4, pp. 2431–2448, 2012. View at Publisher · View at Google Scholar · View at Scopus