Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 371746, 15 pages
http://dx.doi.org/10.1155/2015/371746
Review Article

PRP Augmentation for ACL Reconstruction

1II Orthopaedic and Traumatology Clinic, Biomechanics and Technology Innovation Laboratory, Rizzoli Orthopaedic Institute, Via di Barbiano No. 1/10, 40136 Bologna, Italy
2Nano-Biotechnology Laboratory, Rizzoli Orthopaedic Institute, Via di Barbiano No. 1/10, 40136 Bologna, Italy

Received 29 May 2014; Accepted 15 August 2014

Academic Editor: Tomokazu Yoshioka

Copyright © 2015 Luca Andriolo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Buoncristiani, F. P. Tjoumakaris, J. S. Starman, M. Ferretti, and F. H. Fu, “Anatomic double-bundle anterior cruciate ligament reconstruction,” Arthroscopy, vol. 22, no. 9, pp. 1000–1006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. B. Freedman, M. J. D'Amato, D. D. Nedeff, A. Kaz, and B. R. Bach Jr., “Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts,” The American Journal of Sports Medicine, vol. 31, no. 1, pp. 2–11, 2003. View at Google Scholar · View at Scopus
  3. H. S. Kim, J. K. Seon, and A. R. Jo, “Current trends in anterior cruciate ligament reconstruction,” Knee Surgery & Related Research, vol. 25, no. 4, pp. 165–173, 2013. View at Google Scholar
  4. S. Abe, M. Kurosaka, T. Iguchi, S. Yoshiya, and K. Hirohata, “Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction,” Arthroscopy, vol. 9, no. 4, pp. 394–405, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Cho, T. Muneta, S. Ito, K. Yagishita, and S. Ichinose, “Electron microscopic evaluation of two-bundle anatomically reconstructed anterior cruciate ligament graft,” Journal of Orthopaedic Science, vol. 9, no. 3, pp. 296–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. P. Falconiero, V. J. DiStefano, and T. M. Cook, “Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans,” Arthroscopy, vol. 14, no. 2, pp. 197–205, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Howell, K. E. Knox, T. E. Farley, and M. A. Taylor, “Revascularization of a human anterior cruciate ligament graft during the first two years of implantation,” The American Journal of Sports Medicine, vol. 23, no. 1, pp. 42–49, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. L. L. Johnson, “The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive surgery: a histological study,” Arthroscopy, vol. 9, no. 2, pp. 131–142, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Signorelli, T. Bonanzinga, N. Lopomo et al., “Do pre-operative knee laxity values influence post-operative ones after anterior cruciate ligament reconstruction?” Scandinavian Journal of Medicine and Science in Sports, vol. 23, no. 4, pp. e219–e224, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Di Matteo, G. Filardo, E. Kon, and M. Marcacci, “Platelet-rich plasma: evidence for the treatment of patellar and Achilles tendinopathy—a systematic review,” MUSCULOSKELETAL SURGERY, vol. 99, no. 1, pp. 1–9, 2015. View at Publisher · View at Google Scholar
  11. E. Kon, G. Filardo, B. Di Matteo, and M. Marcacci, “PRP for the treatment of cartilage pathology,” The Open Orthopaedics Journal, vol. 7, pp. 120–128, 2013. View at Google Scholar
  12. T. Yuan, C. Q. Zhang, and J. H. Wang, “Augmenting tendon and ligament repair with platelet-rich plasma (PRP),” Muscle, Ligaments and Tendons Journal, vol. 3, no. 3, pp. 139–149, 2013. View at Google Scholar
  13. G. Filardo, E. Kon, A. Roffi, B. Di Matteo, M. L. Merli, and M. Marcacci, “Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration,” Knee Surgery, Sports Traumatology, Arthroscopy, 2013. View at Publisher · View at Google Scholar
  14. N. A. Smyth, C. D. Murawski, L. A. Fortier, B. J. Cole, and J. G. Kennedy, “Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence,” Arthroscopy, vol. 29, no. 8, pp. 1399–1409, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Engebretsen, K. Steffen, J. Alsousou et al., “IOC consensus paper on the use of platelet-rich plasma in sports medicine,” British Journal of Sports Medicine, vol. 44, no. 15, pp. 1072–1081, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Baksh, C. P. Hannon, C. D. Murawski, N. A. Smyth, and J. G. Kennedy, “Platelet-rich plasma in tendon models: a systematic review of basic science literature,” Arthroscopy, vol. 29, no. 3, pp. 596–607, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. S. G. Boswell, B. J. Cole, E. A. Sundman, V. Karas, and L. A. Fortier, “Platelet-rich plasma: a milieu of bioactive factors,” Arthroscopy, vol. 28, no. 3, pp. 429–439, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Biercevicz, D. L. Miranda, J. T. MacHan, M. M. Murray, and B. C. Fleming, “In situ, noninvasive, T2*-weighted mri-derived parameters predict Ex vivo structural properties of an anterior cruciate ligament reconstruction or bioenhanced primary repair in a porcine model,” The American Journal of Sports Medicine, vol. 41, no. 3, pp. 560–566, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Kuroda, M. Kurosaka, S. Yoshiya, and K. Mizuno, “Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 8, no. 2, pp. 120–126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Slater, J. Patava, K. Kingham, and R. S. Mason, “Involvement of platelets in stimulating osteogenic activity,” Journal of Orthopaedic Research, vol. 13, no. 5, pp. 655–663, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Vavken, F. A. Saad, and M. M. Murray, “Age dependence of expression of growth factor receptors in porcine ACL fibroblasts,” Journal of Orthopaedic Research, vol. 28, no. 8, pp. 1107–1112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sánchez, E. Anitua, J. Azofra, R. Prado, F. Muruzabal, and I. Andia, “Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology,” Arthroscopy, vol. 26, no. 4, pp. 470–480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Radice, R. Yánez, V. Gutiérrez, J. Rosales, M. Pinedo, and S. Coda, “Comparison of magnetic resonance imaging findings in anterior cruciate ligament grafts with and without autologous platelet-derived growth factors,” Arthroscopy, vol. 26, no. 1, pp. 50–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. de Almeida, M. K. Demange, M. F. Sobrado, M. B. Rodrigues, A. Pedrinelli, and A. J. Hernandez, “Patellar tendon healing with platelet-rich plasma: a prospective randomized controlled trial,” The American Journal of Sports Medicine, vol. 40, no. 6, pp. 1282–1288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Cervellin, L. de Girolamo, C. Bait, M. Denti, and P. Volpi, “Autologous platelet-rich plasma gel to reduce donor-site morbidity after patellar tendon graft harvesting for anterior cruciate ligament reconstruction: a randomized, controlled clinical study,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 20, no. 1, pp. 114–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Xie, S. Zhao, H. Wu et al., “Platelet-rich plasma enhances autograft revascularization and reinnervation in a dog model of anterior cruciate ligament reconstruction,” Journal of Surgical Research, vol. 183, no. 1, pp. 214–222, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Xie, H. Wu, S. Zhao, G. Xie, X. Huangfu, and J. Zhao, “The effect of platelet-rich plasma on patterns of gene expression in a dog model of anterior cruciate ligament reconstruction,” Journal of Surgical Research, vol. 180, no. 1, pp. 80–88, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. A. N. Mastrangelo, P. Vavken, B. C. Fleming, S. L. Harrison, and M. M. Murray, “Reduced platelet concentration does not harm PRP effectiveness for ACL repair in a porcine in vivo model,” Journal of Orthopaedic Research, vol. 29, no. 7, pp. 1002–1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Joshi, A. N. Mastrangelo, E. M. Magarian, B. C. Fleming, and M. M. Murray, “Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament,” The American Journal of Sports Medicine, vol. 37, no. 12, pp. 2401–2410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Murray, M. Palmer, E. Abreu, K. P. Spindler, D. Zurakowski, and B. C. Fleming, “Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study,” Journal of Orthopaedic Research, vol. 27, no. 5, pp. 639–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Murray, K. P. Spindler, E. Abreu et al., “Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament,” Journal of Orthopaedic Research, vol. 25, no. 1, pp. 81–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Murray, K. P. Spindler, P. Ballard, T. P. Welch, D. Zurakowski, and L. B. Nanney, “Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold,” Journal of Orthopaedic Research, vol. 25, no. 8, pp. 1007–1017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Murray, K. P. Spindler, C. Devin et al., “Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL,” Journal of Orthopaedic Research, vol. 24, no. 4, pp. 820–830, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Weiler, C. Förster, P. Hunt et al., “The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction,” The American Journal of Sports Medicine, vol. 32, no. 4, pp. 881–891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Yoshida, M. Cheng, and M. M. Murray, “Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture,” Journal of Orthopaedic Research, vol. 32, no. 2, pp. 291–295, 2014. View at Google Scholar
  36. R. Yoshida and M. M. Murray, “Peripheral blood mononuclear cells enhance the anabolic effects of platelet-rich plasma on anterior cruciate ligament fibroblasts,” Journal of Orthopaedic Research, vol. 31, no. 1, pp. 29–34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Cheng, V. M. Johnson, and M. M. Murray, “Effects of age and platelet-rich plasma on ACL cell viability and collagen gene expression,” Journal of Orthopaedic Research, vol. 30, no. 1, pp. 79–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Fallouh, K. Nakagawa, T. Sasho et al., “Effects of autologous platelet-rich plasma on cell viability and collagen synthesis in injured human anterior cruciate ligament,” Journal of Bone and Joint Surgery, vol. 92, no. 18, pp. 2909–2916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. M. Magarian, P. Vavken, and M. M. Murray, “Human anterior cruciate ligament fibroblasts from immature patients have a stronger in vitro response to platelet concentrates than those from mature individuals,” Knee, vol. 18, no. 4, pp. 247–251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Cheng, H. Wang, R. Yoshida, and M. M. Murray, “Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture,” Tissue Engineering A, vol. 16, no. 5, pp. 1479–1489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. N. Mastrangelo, E. M. Magarian, M. P. Palmer, P. Vavken, and M. M. Murray, “The effect of skeletal maturity on the regenerative function of intrinsic ACL cells,” Journal of Orthopaedic Research, vol. 28, no. 5, pp. 644–651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. C. Scherping Jr., C. C. Schmidt, H. I. Georgescu, C. K. Kwoh, C. H. Evans, and S. L. Woo, “Effect of growth factors on the proliferation of ligament fibroblasts from skeletally mature rabbits,” Connective Tissue Research, vol. 36, no. 1, pp. 1–8, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Rupreht, M. Vogrin, and M. Hussein, “MRI evaluation of tibial tunnel wall cortical bone formation after platelet-rich plasma applied during anterior cruciate ligament reconstruction,” Radiology and Oncology, vol. 47, no. 2, pp. 119–124, 2013. View at Google Scholar
  44. R. Seijas, O. Ares, J. Catala, P. Alvarez-Diaz, X. Cusco, and R. Cugat, “Magnetic resonance imaging evaluation of patellar tendon graft remodelling after anterior cruciate ligament reconstruction with or without platelet-rich plasma,” Journal of Orthopaedic Surgery, vol. 21, no. 1, pp. 10–14, 2013. View at Google Scholar
  45. F. Mirzatolooei, M. T. Alamdari, and H. R. Khalkhali, “The impact of platelet-rich plasma on the prevention of tunnel widening in anterior cruciate ligament reconstruction using quadrupled autologous hamstring tendon: a randomised clinical trial,” Journal of Bone and Joint Surgery, vol. 95-B, no. 1, pp. 65–69, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. R. A. Magnussen, D. C. Flanigan, A. D. Pedroza, K. A. Heinlein, and C. C. Kaeding, “Platelet rich plasma use in allograft ACL reconstructions: two-year clinical results of a MOON cohort study,” Knee, vol. 20, no. 4, pp. 277–280, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Rupreht, V. Jevtič, I. Serša, M. Vogrin, and M. Jevšek, “Evaluation of the tibial tunnel after intraoperatively administered platelet-rich plasma gel during anterior cruciate ligament reconstruction using diffusion weighted and dynamic contrast-enhanced MRI,” Journal of Magnetic Resonance Imaging, vol. 37, no. 4, pp. 928–935, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Vadalà, R. Iorio, A. De Carli et al., “Platelet-rich plasma: does it help reduce tunnel widening after ACL reconstruction?” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 21, no. 4, pp. 824–829, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Vogrin, M. Rupreht, D. Dinevski et al., “Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind, clinical trial,” European Surgical Research, vol. 45, no. 2, pp. 77–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Figueroa, P. Melean, R. Calvo et al., “Magnetic resonance imaging evaluation of the integration and maturation of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction using autologous platelet concentrate,” Arthroscopy, vol. 26, no. 10, pp. 1318–1325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. R. Valentí Nin, G. Mora Gasque, A. Valentí Azcárate, J. D. Aquerreta Beola, and M. Hernandez Gonzalez, “Has platelet-rich plasma any role in anterior cruciate ligament allograft healing?” Arthroscopy, vol. 25, no. 11, pp. 1206–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Silva and R. Sampaio, “Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing?” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 17, no. 6, pp. 676–682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Orrego, C. Larrain, J. Rosales et al., “Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel,” Arthroscopy, vol. 24, no. 12, pp. 1373–1380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Vavken, P. Sadoghi, and M. M. Murray, “The effect of platelet concentrates on graft maturation and graft-bone interface healing in anterior cruciate ligament reconstruction in human patients: a systematic review of controlled trials,” Arthroscopy, vol. 27, no. 11, pp. 1573–1583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Tschon, M. Fini, R. Giardino et al., “Lights and shadows concerning platelet products for musculoskeletal regeneration,” Frontiers in Bioscience, vol. 3, no. 1, pp. 96–107, 2011. View at Publisher · View at Google Scholar · View at Scopus