Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 434803, 13 pages
http://dx.doi.org/10.1155/2015/434803
Review Article

The Impact of Microgravity and Hypergravity on Endothelial Cells

1Department of Biomedical and Clinical Sciences “L. Sacco”, Università di Milano, Via Gian Battista Grassi 74, 20157 Milan, Italy
2ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
3Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy

Received 4 July 2014; Revised 20 October 2014; Accepted 4 November 2014

Academic Editor: Jack J. W. A. Van Loon

Copyright © 2015 Jeanette A. M. Maier et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Cines, E. S. Pollak, C. A. Buck et al., “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood, vol. 91, no. 10, pp. 3527–3561, 1998. View at Google Scholar · View at Scopus
  2. H. F. Galley and N. R. Webster, “Physiology of the endothelium,” British Journal of Anaesthesia, vol. 93, no. 1, pp. 105–113, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. P. Herbert and D. Y. R. Stainier, “Molecular control of endothelial cell behaviour during blood vessel morphogenesis,” Nature Reviews Molecular Cell Biology, vol. 12, no. 9, pp. 551–564, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. E. R. Regan and W. C. Aird, “Dynamical systems approach to endothelial heterogeneity,” Circulation Research, vol. 111, no. 1, pp. 110–130, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. K. E. Foreman and J. Tang, “Molecular mechanisms of replicative senescence in endothelial cells,” Experimental Gerontology, vol. 38, no. 11-12, pp. 1251–1257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Buchen, M. Braun, Z. Hejnowicz, and A. Sievers, “Statoliths pull on microfilaments—experiments under microgravity,” Protoplasma, vol. 172, no. 1, pp. 38–42, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Briegleb, “Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool,” ASGSB Bulletin: Publication of the American Society for Gravitational and Space Biology, vol. 5, no. 2, pp. 23–30, 1992. View at Google Scholar · View at Scopus
  8. T. F. B. Kraft, J. J. W. A. van Loon, and J. Z. Kiss, “Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine,” Planta, vol. 211, no. 3, pp. 415–422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Kacena, P. Todd, L. C. Gerstenfeld, and W. J. Landis, “Experiments with osteoblasts cultured under varying orientations with respect to the gravity vector,” Cytotechnology, vol. 39, no. 3, pp. 147–154, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. Ž. Barjaktarović, A. Nordheim, T. Lamkemeyer, C. Fladerer, J. Madlung, and R. Hampp, “Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures,” Journal of Experimental Botany, vol. 58, no. 15-16, pp. 4357–4363, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. L. Morbidelli, M. Monici, N. Marziliano et al., “Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals,” Biochemical and Biophysical Research Communications, vol. 334, no. 2, pp. 491–499, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. Versari, A. Villa, S. Bradamante, and J. A. M. Maier, “Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity,” Biochimica et Biophysica Acta, vol. 1773, no. 11, pp. 1645–1652, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. Gruener, R. Roberts, and R. Reitstetter, “Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight,” Biological Sciences in Space, vol. 8, no. 2, pp. 79–93, 1994. View at Google Scholar · View at Scopus
  14. D. Grimm, P. Kossmehl, M. Shakibaei et al., “Effects of simulated microgravity on thyroid carcinoma cells,” Journal of Gravitational Physiology, vol. 9, no. 1, pp. P253–P256, 2002. View at Google Scholar
  15. K. Hirasaka, T. Nikawa, L. Yuge et al., “Clinorotation prevents differentiation of rat myoblastic L6 cells in association with reduced NF-κB signaling,” Biochimica et Biophysica Acta, vol. 1743, no. 1-2, pp. 130–140, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. Z. Li, Y. Song, M. Yuzhong et al., “Influence of simulated microgravity on avian primordial germ cell migration and reproductive capacity,” Journal of Experimental Zoology, vol. 292, no. 7, pp. 672–676, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. D. Sarkar, T. Nagaya, K. Koga, F. Kambe, Y. Nomura, and H. Seo, “Rotation in clinostat results in apoptosis of osteoblastic ROS 17/2.8 cells,” Journal of Gravitational Physiology, vol. 7, no. 2, pp. P71–P72, 2000. View at Google Scholar · View at Scopus
  18. B. M. Uva, M. A. Masini, M. Sturla et al., “Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture,” Brain Research, vol. 934, no. 2, pp. 132–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. C. Woods, K. E. Banks, R. Gruener, and D. DeLuca, “Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity,” The FASEB Journal, vol. 17, no. 11, pp. 1526–1528, 2003. View at Google Scholar · View at Scopus
  20. B. R. Unsworth and P. I. Lelkes, “Growing tissues in microgravity,” Nature Medicine, vol. 4, no. 8, pp. 901–907, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Versari, G. Longinotti, L. Barenghi, J. A. M. Maier, and S. Bradamante, “The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment,” FASEB Journal, vol. 27, no. 11, pp. 4466–4475, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. I. Carlsson, M. T. Bertilaccio, I. Ascari, S. Bradamante, and J. A. Maier, “Modulation of human endothelial cell behaviour in simulated microgravity,” Journal of Gravitational Physiology, vol. 9, no. 1, pp. P273–P274, 2002. View at Google Scholar
  23. S. Cotrupi, D. Ranzani, and J. A. M. Maier, “Impact of modeled microgravity on microvascular endothelial cells,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1746, no. 2, pp. 163–168, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Science and Technology, vol. 21, no. 4, pp. 311–318, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. J. A. Moes, J. C. Gielen, R.-J. Bleichrodt, J. J. W. A. Van Loon, P. C. M. Christianen, and J. Boonstra, “Simulation of microgravity by magnetic levitation and random positioning: effect on human A431 Cell morphology,” Microgravity Science and Technology, vol. 23, no. 2, pp. 249–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Spisni, M. Toni, A. Strillacci et al., “Caveolae and caveolae constituents in mechanosensing: effect of modeled microgravity on cultured human endothelial cells,” Cell Biochemistry and Biophysics, vol. 46, no. 2, pp. 155–164, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Monici, N. Marziliano, V. Basile et al., “Hypergravity affects morphology and function in microvascular endothelial cells,” Microgravity Science and Technology, vol. 18, no. 3-4, pp. 234–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. I. M. Carlsson, M. T. S. Bertilaccio, E. Ballabio, and J. A. M. Maier, “Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization,” Biochimica et Biophysica Acta: Molecular Cell Research, vol. 1642, no. 3, pp. 173–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Grenon, M. Jeanne, J. Aguado-Zuniga, M. S. Conte, and M. Hughes-Fulford, “Effects of gravitational mechanical unloading in endothelial cells: association between caveolins, inflammation and adhesion molecules,” Scientific reports, vol. 3, p. 1494, 2013. View at Google Scholar · View at Scopus
  30. M. Y. Kapitonova, S. Muid, G. R. A. Froemming et al., “Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC,” Malaysian Journal of Pathology, vol. 34, no. 2, pp. 103–113, 2012. View at Google Scholar · View at Scopus
  31. J. H. Siamwala, S. H. Reddy, S. Majumder et al., “Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells,” Protoplasma, vol. 242, no. 1, pp. 3–12, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. Y. Zhang, C. Sang, K. Paulsen et al., “ICAM-1 expression and organization in human endothelial cells is sensitive to gravity,” Acta Astronautica, vol. 67, no. 9-10, pp. 1073–1080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Griffoni, S. di Molfetta, L. Fantozzi et al., “Modification of proteins secreted by endothelial cells during modeled low gravity exposure,” Journal of Cellular Biochemistry, vol. 112, no. 1, pp. 265–272, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. Y.-C. Wang, S. Zhang, T.-Y. Du, B. Wang, and X.-Q. Sun, “Clinorotation upregulates inducible nitric oxide synthase by inhibiting AP-1 activation in human umbilical vein endothelial cells,” Journal of Cellular Biochemistry, vol. 107, no. 2, pp. 357–363, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. G. L. Sanford, D. Ellerson, C. Melhado-Gardner, A. E. Sroufe, and S. Harris-Hooker, “Three-dimensional growth of endothelial cells in the microgravity-based rotating wall vessel bioreactor,” In Vitro Cellular and Developmental Biology-Animal, vol. 38, no. 9, pp. 493–504, 2002. View at Google Scholar · View at Scopus
  36. M. Monici, F. Cialdai, G. Romano et al., “An in vitro study on tissue repair: impact of unloading on cells involved in the remodelling phase,” Microgravity Science and Technology, vol. 23, no. 4, pp. 391–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Infanger, C. Ulbrich, S. Baatout et al., “Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells,” Journal of Cellular Biochemistry, vol. 101, no. 6, pp. 1439–1455, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. X. Ma, M. Wehland, H. Schulz et al., “Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells,” PLoS ONE, vol. 8, no. 5, Article ID e64402, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. F. Shi, Y.-C. Wang, T.-Z. Zhao et al., “Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway,” PLoS ONE, vol. 7, no. 7, Article ID e40365, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. Infanger, P. Kossmehl, M. Shakibaei et al., “Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor,” Apoptosis, vol. 11, no. 5, pp. 749–764, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. Grosse, M. Wehland, J. Pietsch et al., “Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells,” FASEB Journal, vol. 26, no. 2, pp. 639–655, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Wehland, X. Ma, M. Braun et al., “The impact of altered gravity and vibration on endothelial cells during a parabolic flight,” Cellular Physiology and Biochemistry, vol. 31, no. 2-3, pp. 432–451, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. D. Grimm, J. Bauer, C. Ulbrich et al., “Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity,” Tissue Engineering A, vol. 16, no. 5, pp. 1559–1573, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. D. Grimm, M. Infanger, K. Westphal et al., “A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness,” Tissue Engineering A, vol. 15, no. 8, pp. 2267–2275, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. J. H. Siamwala, S. Majumder, K. P. Tamilarasan et al., “Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOS-cGMP-PKG pathway in macrovascular endothelial cells,” FEBS Letters, vol. 584, no. 15, pp. 3415–3423, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. Mariotti and J. A. M. Maier, “Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells,” Journal of Cellular Biochemistry, vol. 104, no. 1, pp. 129–135, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. C.-Y. Kang, L. Zou, M. Yuan et al., “Impact of simulated microgravity on microvascular endothelial cell apoptosis,” European Journal of Applied Physiology, vol. 111, no. 9, pp. 2131–2138, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. S. Cotrupi and J. A. M. Maier, “Is HSP70 upregulation crucial for cellular proliferative response in simulated microgravity?” Journal of Gravitational Physiology, vol. 11, no. 2, pp. P173–176, 2004. View at Google Scholar · View at Scopus
  49. L. Buravkova, Y. Romanov, M. Rykova, O. Grigorieva, and N. Merzlikina, “Cell-to-cell interactions in changed gravity: ground-based and flight experiments,” Acta Astronautica, vol. 57, no. 2–8, pp. 67–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. S. J. Crawford-Young, “Effects of microgravity on cell cytoskeleton and embryogenesis,” International Journal of Developmental Biology, vol. 50, no. 2-3, pp. 183–191, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. J. Pietsch, J. Bauer, M. Egli et al., “The effects of weightlessness on the human organism and mammalian cells,” Current Molecular Medicine, vol. 11, no. 5, pp. 350–364, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. V. A. Convertino, “Status of cardiovascular issues related to space flight: implications for future research directions,” Respiratory Physiology and Neurobiology, vol. 169, supplement 1, pp. S34–S37, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. B. J. Yates and I. A. Kerman, “Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system,” Brain Research Reviews, vol. 28, no. 1-2, pp. 73–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Ma, A. Sickmann, J. Pietsch et al., “Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures,” Proteomics, vol. 14, no. 6, pp. 689–698, 2014. View at Google Scholar
  55. C. J. S. Edgell, C. C. McDonald, and J. B. Graham, “Permanent cell line expressing human factor VIII-related antigen established by hybridization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 12, pp. 3734–3737, 1983. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Boerma, G. R. Burton, J. Wang, L. M. Fink, R. E. McGehee Jr., and M. Hauer-Jensen, “Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition,” Blood Coagulation and Fibrinolysis, vol. 17, no. 3, pp. 173–180, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. H. F. Galley, M. G. Blaylock, A. M. Dubbels, and N. R. Webster, “Variability in E-selectin expression, mRNA levels and sE-selectin release between endothelial cell lines and primary endothelial cells,” Cell Biology International, vol. 24, no. 2, pp. 91–99, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. M. Y. Kapitonova, S. L. Kuznetsov, G. R. A. Froemming et al., “Effects of space mission factors on the morphology and function of endothelial cells,” Bulletin of Experimental Biology and Medicine, vol. 154, no. 6, pp. 796–801, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. J. M. Davidson, A. M. Aquino, S. C. Woodward, and W. W. Wilfinger, “Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat,” FASEB Journal, vol. 13, no. 2, pp. 325–329, 1999. View at Google Scholar · View at Scopus
  60. M. E. Kirchen, K. M. O'Connor, H. E. Gruber et al., “Effects of microgravity on bone healing in a rat fibular osteotomy model,” Clinical Orthopaedics and Related Research, vol. 318, pp. 231–242, 1995. View at Google Scholar · View at Scopus
  61. D. Ingber, “How cells (might) sense microgravity,” The FASEB Journal, vol. 13, no. 8, pp. S3–S15, 1999. View at Google Scholar · View at Scopus
  62. M. Hughes-Fulford and J. Boonstra, “Cell mechanotransduction: cytoskeleton and related signalling pathways,” in Cell Mechanochemistry. Biological Systems and Factors Inducing Mechanical Stress, such as Light, Pressure and Gravity, M. Monici and J. W. A. van Loon, Eds., pp. 75–95, Transworld Research Network, Trivandrum, India, 2010. View at Google Scholar
  63. C. Papaseit, N. Pochon, and J. Tabony, “Microtubule self-organization is gravity-dependent,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8364–8368, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. R. G. Bacabac, D. Mizuno, and G. H. Koenderink, “Mechanical properties of living cells: on mechanosensing and microgravity,” in Cell Mechanochemistry. Biological Systems and Factors Inducing Mechanical Stress, Such as Light, Pressure and Gravity, M. Monici and J. W. A. van Loon, Eds., pp. 23–54, Transworld Research Network, Trivandrum, India, 2010. View at Google Scholar
  65. E. Spisni, M. C. Blanco, C. Griffoni et al., “Mechanosensing role of caveolae and caveolar constituents in human endothelial cells,” Journal of Cellular Physiology, vol. 197, no. 2, pp. 198–204, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. W. K. Sumanasekera, L. Zhao, M. Ivanova et al., “Effect of estradiol and dihydrotestosterone on hypergravity-induced MAPK signaling and occludin expression in human umbilical vein endothelial cells,” Cell and Tissue Research, vol. 324, no. 2, pp. 243–253, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. W. K. Sumanasekera, G. U. Sumanasekera, K. A. Mattingly, S. M. Dougherty, R. S. Keynton, and C. M. Klinge, “Estradiol and dihydrotestosterone regulate endothelial cell barrier function after hypergravity-induced alterations in MAPK activity,” American Journal of Physiology: Cell Physiology, vol. 293, no. 2, pp. C566–C573, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. L. Morbidelli, N. Marziliano, V. Basile et al., “Effect of hypergravity on endothelial cell function and gene expression,” Microgravity Science and Technology, vol. 21, no. 1-2, pp. 135–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Koyama, C. Kimura, M. Hayashi, M. Watanabe, Y. Karashima, and M. Oike, “Hypergravity induces ATP release and actin reorganization via tyrosine phosphorylation and RhoA activation in bovine endothelial cells,” Pflugers Archiv European Journal of Physiology, vol. 457, no. 4, pp. 711–719, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus