Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 472174, 9 pages
http://dx.doi.org/10.1155/2015/472174
Research Article

Isotypes of Epstein-Barr Virus Antibodies in Rheumatoid Arthritis: Association with Rheumatoid Factors and Citrulline-Dependent Antibodies

1Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
2Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
3Department of Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark

Received 11 November 2014; Revised 28 January 2015; Accepted 23 February 2015

Academic Editor: Hai-Feng Pan

Copyright © 2015 Marie Wulff Westergaard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Myasoedova, J. M. Davis III, C. S. Crowson, and S. E. Gabriel, “Epidemiology of rheumatoid arthritis: rheumatoid arthritis and mortality,” Current Rheumatology Reports, vol. 12, no. 5, pp. 379–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Pedersen, S. Jacobsen, P. Garred et al., “Strong combined gene-environment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case-control study in Denmark,” Arthritis & Rheumatism, vol. 56, no. 5, pp. 1446–1453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. H. Costenbader and E. W. Karlson, “Epstein-Barr virus and rheumatoid arthritis: is there a link?” Arthritis Research and Therapy, vol. 8, article 204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. H. Niller, H. Wolf, and J. Minarovits, “Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases,” Autoimmunity, vol. 41, no. 4, pp. 298–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Amon and P. J. Farrell, “Reactivation of Epstein-Barr virus from latency,” Reviews in Medical Virology, vol. 15, no. 3, pp. 149–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Draborg, J. M. Jørgensen, H. Müller et al., “Epstein-Barr virus early antigen diffuse (EBV-EA/D)-directed immunoglobulin A antibodies in systemic lupus erythematosus patients,” Scandinavian Journal of Rheumatology, vol. 41, no. 4, pp. 280–289, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Zhang, E. Holley-Guthrie, D. Dorsky, and S. Kenney, “Identification of transactivator and nuclear localization domains in the Epstein-Barr virus DNA polymerase accessory protein, BMRF1,” The Journal of General Virology, vol. 80, no. 1, pp. 69–74, 1999. View at Google Scholar · View at Scopus
  8. W. Hinderer, D. Lang, M. Rothe, R. Vornhagen, H. H. Sonneborn, and H. Wolf, “Serodiagnosis of Epstein-Barr virus infection by using recombinant viral capsid antigen fragments and autologous gene fusion,” Journal of Clinical Microbiology, vol. 37, no. 10, pp. 3239–3244, 1999. View at Google Scholar · View at Scopus
  9. É. Toussirot and J. Roudier, “Epstein-Barr virus in autoimmune diseases,” Best Practice and Research: Clinical Rheumatology, vol. 22, no. 5, pp. 883–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Alspaugh, G. Henle, E. T. Lennette, and W. Henle, “Elevated levels of antibodies to Epstein-Barr virus antigens in sera and synovial fluids of patients with rheumatoid arthritis,” The Journal of Clinical Investigation, vol. 67, no. 4, pp. 1134–1140, 1981. View at Publisher · View at Google Scholar · View at Scopus
  11. P. B. Ferrell, C. T. Aitcheson, G. R. Pearson, and E. M. Tan, “Seroepidemiological study of relationships between Epstein-Barr virus and rheumatoid arthritis,” The Journal of Clinical Investigation, vol. 67, no. 3, pp. 681–687, 1981. View at Publisher · View at Google Scholar · View at Scopus
  12. M. McDermott, M. Molloy, J. Buckley, and J. Greally, “Antibodies to Epstein-Barr viral antigens in familial rheumatoid arthritis,” Irish Journal of Medical Science, vol. 158, no. 8, pp. 203–205, 1989. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Mousavi-Jazi, L. Boström, C. Lövmark, A. Linde, M. Brytting, and V.-A. Sundqvist, “Infrequent detection of cytomegalovirus and Epstein-Barr virus DNA in synovial membrane of patients with rheumatoid arthritis,” Journal of Rheumatology, vol. 25, no. 4, pp. 623–628, 1998. View at Google Scholar · View at Scopus
  14. J. D. Lünemann, O. Frey, T. Eidner et al., “Increased frequency of EBV-specific effector memory CD8+ T cells correlates with higher viral load in rheumatoid arthritis,” Journal of Immunology, vol. 181, no. 2, pp. 991–1000, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Aletaha, T. Neogi, A. J. Silman et al., “2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative,” Arthritis & Rheumatology, vol. 62, pp. 2569–2581, 2010. View at Google Scholar
  16. M. C. Hochberg, “Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus,” Arthritis and rheumatism, vol. 40, article 1725, 1997. View at Google Scholar · View at Scopus
  17. A. H. Draborg, S. Jacobsen, M. Westergaard et al., “Reduced response to Epstein-Barr virus antigens by T-cells in systemic lupus erythematosus patients,” Lupus Science & Medicine, vol. 1, no. 1, Article ID e000015, 2014. View at Publisher · View at Google Scholar
  18. L. N. Troelsen, P. Garred, B. Christiansen et al., “Double role of mannose-binding lectin in relation to carotid intima-media thickness in patients with rheumatoid arthritis,” Molecular Immunology, vol. 47, no. 4, pp. 713–718, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Høier-Madsen, L. P. Nielsen, and S. Møller, “Determination of IgM rheumatoid factors by enzyme-linked immunosorbent assay (ELISA),” Danish Medical Bulletin, vol. 148, pp. 2018–2021, 1986. View at Google Scholar · View at Scopus
  20. L. Frappier, “The Epstein-Barr virus EBNA1 protein,” Scientifica, vol. 2012, Article ID 438204, 15 pages, 2012. View at Publisher · View at Google Scholar
  21. F. Chen, J.-Z. Zou, L. Di Renzo et al., “A subpopulation of normal B cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1,” Journal of Virology, vol. 69, no. 6, pp. 3752–3758, 1995. View at Google Scholar · View at Scopus
  22. R. D. Hess, “Routine Epstein-Barr virus diagnostics from the laboratory perspective: still challenging after 35 years,” Journal of Clinical Microbiology, vol. 42, no. 8, pp. 3381–3387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. T. J. Kindt, R. A. Goldsby, B. A. Osborne, and J. Kuby, Immunology, W.H. Freeman, New York, NY, USA, 6th edition, 2007.
  24. O. H. Brekke and I. Sandlie, “Therapeutic antibodies for human diseases at the dawn of the twenty-first century,” Nature Reviews Drug Discovery, vol. 2, no. 1, pp. 52–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. P. Murphy, C. A. Janeway, P. Travers, M. Walport, A. Mowat, and C. T. Weaver, Janeway's Immunobiology, Garland Science, London, UK, 8th edition, 2012.
  26. M. Zhang and P. Coffino, “Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing,” Journal of Biological Chemistry, vol. 279, no. 10, pp. 8635–8641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Fåhraeus, “Do peptides control their own birth and death?” Nature Reviews Molecular Cell Biology, vol. 6, no. 3, pp. 263–267, 2005. View at Publisher · View at Google Scholar
  28. T. Klatt, Q. Ouyang, T. Flad et al., “Expansion of peripheral CD8+ CD28- T cells in response to Epstein-Barr virus in patients with rheumatoid arthritis,” The Journal of Rheumatology, vol. 32, no. 2, pp. 239–251, 2005. View at Google Scholar · View at Scopus
  29. A. Ichikawa, F. Arakawa, J. Kiyasu et al., “Methotrexate/iatrogenic lymphoproliferative disorders in rheumatoid arthritis: histology, Epstein-Barr virus, and clonality are important predictors of disease progression and regression,” European Journal of Haematology, vol. 91, no. 1, pp. 20–28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Matsuo, Y. Xiang, H. Nakamura et al., “Identification of novel citrullinated autoantigens of synovium in rheumatoid arthritis using a proteomic approach,” Arthritis Research and Therapy, vol. 8, article R175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Takizawa, A. Suzuki, T. Sawada et al., “Citrullinated fibrinogen detected as a soluble citrullinated autoantigen in rheumatoid arthritis synovial fluids,” Annals of the Rheumatic Diseases, vol. 65, no. 8, pp. 1013–1020, 2006. View at Google Scholar · View at Scopus
  32. L. Klareskog, K. Amara, and V. Malmström, “Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis,” Current Opinion in Rheumatology, vol. 26, no. 1, pp. 72–79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Pratesi, C. Tommasi, C. Anzilotti, D. Chimenti, and P. Migliorini, “Deiminated Epstein-Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 54, no. 3, pp. 733–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Pratesi, C. Tommasi, C. Anzilotti et al., “Antibodies to a new viral citrullinated peptide, VCP2: fine specificity and correlation with anti-cyclic citrullinated peptide (CCP) and anti-VCP1 antibodies,” Clinical and Experimental Immunology, vol. 164, no. 3, pp. 337–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Szekanecz, L. Soós, Z. Szabó et al., “Anti-citrullinated protein antibodies in rheumatoid arthritis: as good as it gets?” Clinical Reviews in Allergy and Immunology, vol. 34, no. 1, pp. 26–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. B. Parekh, D. A. Isenberg, B. M. Ansell, I. M. Roitt, R. A. Dwek, and T. W. Rademacher, “Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and juvenile onset rheumatoid arthritis and relation to disease activity,” The Lancet, vol. 1, no. 8592, pp. 966–969, 1988. View at Google Scholar · View at Scopus
  37. J. Keusch, P. M. Lydyard, and P. J. Delves, “The effect on IgG glycosylation of altering β1,4-galactosyltransferase-1 activity in B cells,” Glycobiology, vol. 8, no. 12, pp. 1215–1220, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. S. P. Moyes, C. M. Brown, B. B. Scott, R. N. Maini, and R. A. Mageed, “Analysis of Vκ genes in rheumatoid arthritis (RA) synovial B lymphocytes provides evidence for both polyclonal activation and antigen- driven selection,” Clinical and Experimental Immunology, vol. 105, no. 1, pp. 89–98, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Dörner and G. R. Burmester, “The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets,” Current Opinion in Rheumatology, vol. 15, no. 3, pp. 246–252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Cambridge, H. C. Perry, L. Nogueira et al., “The effect of B-cell depletion therapy on serological evidence of B-cell and plasmablast activation in patients with rheumatoid arthritis over multiple cycles of rituximab treatment,” Journal of Autoimmunity, vol. 50, pp. 67–76, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Scarsi, L. Paolini, D. Ricotta et al., “Abatacept reduces levels of switched memory B cells, autoantibodies, and immunoglobulins in patients with rheumatoid arthritis,” The Journal of Rheumatology, vol. 41, no. 4, pp. 666–672, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. M. G. Zavala-Cerna, A. Nava, E. García-Castañeda, J. Durán-González, M. J. Arias-Merino, and M. Salazar-Páramo, “Serum IgG activity against cyclic citrullinated peptide in patients evaluated for rheumatoid factor correlates with the IgM isotype,” Rheumatology International, vol. 28, no. 9, pp. 851–857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Greiner, H. Plischke, H. Kellner, and R. Gruber, “Association of anti-cyclic citrullinated peptide antibodies, anti-citrullin antibodies, and IgM and IgA rheumatoid factors with serological parameters of disease activity in rheumatoid arthritis,” Annals of the New York Academy of Sciences, vol. 1050, pp. 295–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. T. D. Jaskowski, H. R. Hill, K. L. Russo, G. Lakos, Z. Szekanecz, and M. Teodorescu, “Relationship between rheumatoid factor isotypes and IgG anti-cyclic citrullinated peptide antibodies,” Journal of Rheumatology, vol. 37, no. 8, pp. 1582–1588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Lakos, L. Soós, A. Fekete et al., “Anti-cyclic citrullinated peptide antibody isotypes in rheumatoid arthritis: association with disease duration, rheumatoid factor production and the presence of shared epitope,” Clinical and Experimental Rheumatology, vol. 26, no. 2, pp. 253–260, 2008. View at Google Scholar · View at Scopus
  46. G. A. Schellekens, H. Visser, B. A. de Jong et al., “The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide,” Arthritis & Rheumatism, vol. 43, no. 1, pp. 155–163, 2000. View at Publisher · View at Google Scholar