Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 483150, 16 pages
http://dx.doi.org/10.1155/2015/483150
Research Article

Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology

Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, 11340 México, DF, Mexico

Received 27 September 2014; Accepted 7 January 2015

Academic Editor: Tao Huang

Copyright © 2015 Gloria P. Monterrubio-López et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Weiner III and S. H. E. Kaufmann, “Recent advances towards tuberculosis control: vaccines and biomarkers,” Journal of Internal Medicine, vol. 275, no. 5, pp. 467–480, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Montoya, J. A. Solon, S. R. C. Cunanan et al., “A randomized, controlled dose-finding Phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults,” Journal of Clinical Immunology, vol. 33, no. 8, pp. 1360–1375, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. Junqueira-Kipnis, L. M. Marques Neto, and A. Kipnis, “Role of fused Mycobacterium tuberculosis immunogens and adjuvants in modern tuberculosis vaccines,” Frontiers in Immunology, vol. 5, article 188, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. World Health Organization, Global Tuberculosis Report, World Health Organization, Lyon, France, 2013.
  5. B. M. Buddle, N. A. Parlane, D. N. Wedlock, and A. Heiser, “Overview of vaccination trials for control of tuberculosis in cattle, wildlife and humans,” Transboundary and Emerging Diseases, vol. 60, no. 1, pp. 136–146, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Lu, Z. Y. Xia, and L. Bao, “Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy,” Cellular Immunology, vol. 285, no. 1-2, pp. 111–117, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. E. Kaufmann, “Tuberculosis vaccine development at a divide,” Current Opinion in Pulmonary Medicine, vol. 20, no. 3, pp. 294–300, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Adu-Bobie, B. Capecchi, D. Serruto, R. Rappuoli, and M. Pizza, “Two years into reverse vaccinology,” Vaccine, vol. 21, no. 7-8, pp. 605–610, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Ferreira and G. A. Porco, “Vacunas derivadas del análisis de los genomas: vacunología inversa,” Interciencia, vol. 33, pp. 353–358, 2008. View at Google Scholar
  10. M. Scarselli, M. M. Giuliani, J. Adu-Bobie, M. Pizza, and R. Rappuoli, “The impact of genomics on vaccine design,” Trends in Biotechnology, vol. 23, no. 2, pp. 84–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. D. Rinaudo, J. L. Telford, R. Rappuoli, and K. L. Seib, “Vaccinology in the genome era,” The Journal of Clinical Investigation, vol. 119, no. 9, pp. 2515–2525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. Mustafa, “In silico analysis and experimental validation of Mycobacterium tuberculosis-specific proteins and peptides of Mycobacterium tuberculosis for immunological diagnosis and vaccine development,” Medical Principles and Practice, vol. 22, no. 1, pp. 43–51, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Vivona, F. Bernante, and F. Filippini, “NERVE: new enhanced reverse vaccinology environment,” BMC Biotechnology, vol. 6, article 35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Bertholet, S. G. Reed, and R. Rappuoli, “Reverse vaccinology applied to TB,” in The Art & Science of Tuberculosis Vaccine Development, N. M. Nor, A. Acosta, and M. E. Sarmiento, Eds., pp. 413–431, Oxford University Press, Pulau Pinang, Malaysia, 2nd edition, 2014. View at Google Scholar
  15. N. Rapin, O. Lund, M. Bernaschi, and F. Castiglione, “Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system,” PLoS ONE, vol. 5, no. 4, Article ID e9862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Chaudhuri, D. Kulshreshtha, M. V. Raghunandanan, and S. Ramachandran, “Integrative immunoinformatics for Mycobacterial diseases in R platform,” Systems and Synthetic Biology, vol. 8, no. 1, pp. 27–39, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. He and Z. Xiang, “Databases and in silico tools for vaccine design,” Methods in Molecular Biology, vol. 993, pp. 115–127, 2013. View at Google Scholar · View at Scopus
  18. National Center for Biotechnology Information (NCBI), http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi.
  19. I. A. Doytchinova and D. R. Flower, “VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines,” BMC Bioinformatics, vol. 8, article 4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Käll, A. Krogh, and E. L. L. Sonnhammer, “A combined transmembrane topology and signal peptide prediction method,” Journal of Molecular Biology, vol. 338, no. 5, pp. 1027–1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Deléage, C. Combet, C. Blanchet, and C. Geourjon, “ANTHEPROT: an integrated protein sequence analysis software with client/server capabilities,” Computers in Biology and Medicine, vol. 31, no. 4, pp. 259–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, “ExPASy: the proteomics server for in-depth protein knowledge and analysis,” Nucleic Acids Research, vol. 31, no. 13, pp. 3784–3788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Vita, L. Zarebski, J. A. Greenbaum et al., “The immune epitope database 2.0,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp1004, pp. D854–D862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-G. Rammensee, J. Bachmann, N. P. N. Emmerich, O. A. Bachor, and S. Stevanović, “SYFPEITHI: database for MHC ligands and peptide motifs,” Immunogenetics, vol. 50, no. 3-4, pp. 213–219, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Singh and G. P. S. Raghava, “ProPred: prediction of HLA-DR binding sites,” Bioinformatics, vol. 17, no. 12, pp. 1236–1237, 2002. View at Google Scholar · View at Scopus
  27. D. R. Flower, Bioinformatics for Vaccinology, Wiley-Blackwell, New York, NY, USA, 1st edition, 2008.
  28. Vaccine Investigation and Online Information Network (VIOLIN), http://www.violinet.org/.
  29. J. A. Triccas and J. K. Nambiar, “Challenge of developing new tuberculosis vaccines to generate life-long protective immunity,” Expert Review of Vaccines, vol. 8, no. 7, pp. 823–825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Bekmurzayeva, M. Sypabekova, and D. Kanayeva, “Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis,” Tuberculosis, vol. 93, no. 4, pp. 381–388, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Brodin, I. Rosenkrands, P. Andersen, S. T. Cole, and R. Brosch, “ESAT-6 proteins: protective antigens and virulence factors?” Trends in Microbiology, vol. 12, no. 11, pp. 500–508, 2004. View at Google Scholar · View at Scopus
  32. S. Bertholet, G. C. Ireton, D. J. Ordway et al., “A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis,” Science Translational Medicine, vol. 2, no. 53, Article ID 53ra74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Bottai and R. Brosch, “Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families,” Molecular Microbiology, vol. 73, no. 3, pp. 325–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. C. Derrick and S. L. Morris, “The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression,” Cellular Microbiology, vol. 9, no. 6, pp. 1547–1555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. N. C. G. van Pittius, S. L. Sampson, H. Lee, Y. Kim, P. D. van Helden, and R. M. Warren, “Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions,” BMC Evolutionary Biology, vol. 6, article 95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Harboe, T. Oettinger, H. G. Wiker, I. Rosenkrands, and P. Andersen, “Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG,” Infection and Immunity, vol. 64, no. 1, pp. 16–22, 1996. View at Google Scholar · View at Scopus
  37. F.-A. Mir, S. H. E. Kaufmann, and A. N. Eddine, “A multicistronic DNA vaccine induces significant protection against tuberculosis in mice and offers flexibility in the expressed antigen repertoire,” Clinical and Vaccine Immunology, vol. 16, no. 10, pp. 1467–1475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. S. Renshaw, K. L. Lightbody, V. Veverka et al., “Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6,” The EMBO Journal, vol. 24, no. 14, pp. 2491–2498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. X.-Y. He, J. Li, J. Hao et al., “Assessment of five antigens from Mycobacterium tuberculosis for serodiagnosis of tuberculosis,” Clinical and Vaccine Immunology, vol. 18, no. 4, pp. 565–570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Samten, X. Wang, and P. F. Barnes, “Mycobacterium tuberculosis ESX-1 system-secreted protein ESAT-6 but not CFP10 inhibits human T-cell immune responses,” Tuberculosis, vol. 89, no. 1, pp. S74–S76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Banu, N. Honoré, B. Saint-Joanis, D. Philpott, M.-C. Prévost, and S. T. Cole, “Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens?” Molecular Microbiology, vol. 44, no. 1, pp. 9–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. Brennan, G. Delogu, Y. Chen et al., “Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells,” Infection and Immunity, vol. 69, no. 12, pp. 7326–7333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. P. P. Singh, M. Parra, N. Cadieux, and M. J. Brennan, “A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins,” Microbiology, vol. 154, no. 11, pp. 3469–3479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. G. Chaitra, M. S. Shaila, and R. Nayak, “Evaluation of T-cell responses to peptides with MHC class I-binding motifs derived from PE_PGRS 33 protein of Mycobacterium tuberculosis,” Journal of Medical Microbiology, vol. 56, no. 4, pp. 466–474, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Delogu, C. Pusceddu, A. Bua, G. Fadda, M. J. Brennan, and S. Zanetti, “Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure,” Molecular Microbiology, vol. 52, no. 3, pp. 725–733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Espitia, J. P. Laclette, M. Mondragón-Palomino et al., “The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins?” Microbiology, vol. 145, no. 12, pp. 3487–3495, 1999. View at Google Scholar · View at Scopus
  47. G. Delogu and M. J. Brennan, “Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis,” Infection and Immunity, vol. 69, no. 9, pp. 5606–5611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Karboul, N. C. G. van Pittius, A. Namouchi et al., “Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair,” BMC Evolutionary Biology, vol. 6, article 107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. A. S. Mustafa, R. Al-Attiyah, S. N. M. Hanif, and F. A. Shaban, “Efficient testing of large pools of Mycobacterium tuberculosis RD1 peptides and identification of major antigens and immunodominant peptides recognized by human Th1 cells,” Clinical and Vaccine Immunology, vol. 15, no. 6, pp. 916–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Al-Attiyah and A. S. Mustafa, “Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-Cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis,” Scandinavian Journal of Immunology, vol. 59, no. 1, pp. 16–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Kocíncová, B. Sondén, L. De Mendonça-Lima, B. Gicquel, and J.-M. Reyrat, “The Erp protein is anchored at the surface by a carboxy-terminal hydrophobic domain and is important for cell-wall structure in Mycobacterium smegmatis,” FEMS Microbiology Letters, vol. 231, no. 2, pp. 191–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. L. I. Klepp, M. Soria, F. C. Blanco et al., “Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system,” BMC Molecular Biology, vol. 10, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. L. de Mendonça-Lima, Y. Bordat, E. Pivert et al., “The allele encoding the mycobacterial Erp protein affects lung disease in mice,” Cellular Microbiology, vol. 5, no. 1, pp. 65–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Bhakta and J. Basu, “Overexpression, purification and biochemical characterization of a class a high-molecular-mass penicillin-binding protein (PBP), PBP1* and its soluble derivative from Mycobacterium tuberculosis,” Biochemical Journal, vol. 361, no. 3, pp. 635–639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. F.-X. Berthet, M. Lagranderie, P. Gounon et al., “Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene,” Science, vol. 282, no. 5389, pp. 759–762, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Billman-Jacobe, R. E. Haites, and R. L. Coppel, “Characterization of a Mycobacterium smegmatis mutant lacking penicillin binding protein 1,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 12, pp. 3011–3013, 1999. View at Google Scholar · View at Scopus
  57. L. G. Dover, A. M. Cerdeño-Tárraga, M. J. Pallen, J. Parkhill, and G. S. Besra, “Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae,” FEMS Microbiology Reviews, vol. 28, no. 2, pp. 225–250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. J. E. Graham and J. E. Clark-Curtiss, “Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS),” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 20, pp. 11554–11559, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. C. R. McEvoy, P. D. Van Helden, R. M. Warren, and N. C. G. Van Pittius, “Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region,” BMC Evolutionary Biology, vol. 9, no. 1, article no. 237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Bansal, S. R. Elluru, Y. Narayana et al., “PE-PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells,” The Journal of Immunology, vol. 184, no. 7, pp. 3495–3504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. G. Drage, N. D. Pecora, A. G. Hise et al., “TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis,” Cellular Immunology, vol. 258, no. 1, pp. 29–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A.-H. Hovav, J. Mullerad, L. Davidovitch et al., “The Mycobacterium tuberculosis recombinant 27-kilodalton lipoprotein induces a strong Th1-type immune response deleterious to protection,” Infection and Immunity, vol. 71, no. 6, pp. 3146–3154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. I. C. Sutcliffe and D. J. Harrington, “Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components,” FEMS Microbiology Reviews, vol. 28, no. 5, pp. 645–659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Rezwan, T. Grau, A. Tschumi, and P. Sander, “Lipoprotein synthesis in mycobacteria,” Microbiology, vol. 153, no. 3, pp. 652–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. E. C. Hett and E. J. Rubin, “Bacterial growth and cell division: a mycobacterial perspective,” Microbiology and Molecular Biology Reviews, vol. 72, no. 1, pp. 126–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. E. C. Hett, M. C. Chao, A. J. Steyn, S. M. Fortune, L. L. Deng, and E. J. Rubin, “A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis,” Molecular Microbiology, vol. 66, no. 3, pp. 658–668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Brodin, L. Majlessi, L. Marsollier et al., “Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence,” Infection and Immunity, vol. 74, no. 1, pp. 88–98, 2006. View at Publisher · View at Google Scholar · View at Scopus