Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 504529, 10 pages
http://dx.doi.org/10.1155/2015/504529
Research Article

Anti-Lung Cancer Activity of the Curcumin Analog JZ534 In Vitro

1Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
2Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China

Received 3 November 2014; Accepted 8 February 2015

Academic Editor: Xin-yuan Guan

Copyright © 2015 Jianzhang Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Ca—A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths,” CA Cancer Journal for Clinicians, vol. 61, no. 4, pp. 212–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. R. Gandara, T. Li, P. N. Lara et al., “Acquired resistance to targeted therapies against oncogene-driven non-small-cell lung cancer: approach to subtyping progressive disease and clinical implications,” Clinical Lung Cancer, vol. 15, no. 1, pp. 1–6, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Daniel, “Lung cancer, a worrying epidemiological evolution,” Revue de l'Infirmiere, no. 184, pp. 14–16, 2012. View at Google Scholar · View at Scopus
  5. D. Ball, A. Mitchell, D. Giroux, and R. Rami-Porta, “Effect of tumor size on prognosis in patients treated with radical radiotherapy or chemoradiotherapy for non-small cell lung cancer. An analysis of the staging project database of the International Association for the Study of Lung Cancer,” Journal of Thoracic Oncology, vol. 8, no. 3, pp. 315–321, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Spira and D. S. Ettinger, “Multidisciplinary management of lung cancer,” The New England Journal of Medicine, vol. 350, no. 4, pp. 379–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Sharma, W. P. Steward, and A. J. Gescher, “Pharmacokinetics and pharmacodynamics of curcumin,” Advances in Experimental Medicine and Biology, vol. 595, pp. 453–470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Kuttan, K. B. Kumar, C. Guruvayoorappan, and R. Kuttan, “Antitumor, anti-invasion, and antimetastatic effects of curcumin,” Advances in Experimental Medicine and Biology, vol. 595, pp. 173–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. B. Aggarwal, C. Sundaram, N. Malani, and H. Ichikawa, “Curcumin: the Indian solid gold,” Advances in Experimental Medicine and Biology, vol. 595, pp. 1–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Lev-Ari, A. Starr, A. Vexler et al., “Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity,” Anticancer Research, vol. 26, no. 6B, pp. 4423–4430, 2006. View at Google Scholar · View at Scopus
  11. S. Singh and A. Khar, “Biological effects of curcumin and its role in cancer chemoprevention and therapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 6, no. 3, pp. 259–270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara, and B. B. Aggarwal, “Curcumin and cancer: an ‘old-age’ disease with an ‘age-old’ solution,” Cancer Letters, vol. 267, no. 1, pp. 133–164, 2008. View at Google Scholar
  13. Y. K. Lee, S. Y. Park, Y. M. Kim, and O. J. Park, “Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells,” Annals of the New York Academy of Sciences, vol. 1171, pp. 489–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. W. M. Abuzeid, S. Davis, A. L. Tang et al., “Sensitization of head and neck cancer to cisplatin through the use of a novel curcumin analog,” Archives of Otolaryngology—Head and Neck Surgery, vol. 137, no. 5, pp. 499–507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Ramachandran, S. Rodriguez, R. Ramachandran et al., “Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines,” Anticancer Research, vol. 25, no. 5, pp. 3293–3302, 2005. View at Google Scholar · View at Scopus
  16. E. M. Al-Hujaily, A. G. Mohamed, I. Al-Sharif et al., “PAC, a novel curcumin analogue, has anti-breast cancer properties with higher efficiency on ER-negative cells,” Breast Cancer Research and Treatment, vol. 128, no. 1, pp. 97–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. B. Kunnumakkara, S. Guha, S. Krishnan, P. Diagaradjane, J. Gelovani, and B. B. Aggarwal, “Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products,” Cancer Research, vol. 67, no. 8, pp. 3853–3861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Lev-Ari, A. Starr, A. Vexler et al., “Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity,” Anticancer Research, vol. 26, no. 6, pp. 4423–4430, 2006. View at Google Scholar · View at Scopus
  19. G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. S. S. R. Srinivas, “Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers,” Planta Medica, vol. 64, no. 4, pp. 353–356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Heger, R. F. van Golen, M. Broekgaarden, and M. C. Michel, “The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancers,” Pharmacological Reviews, vol. 66, no. 1, pp. 222–307, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Zhao, Z. Liu, and G. Liang, “Promising curcumin-based drug design: Mono-carbonyl analogues of curcumin (MACs),” Current Pharmaceutical Design, vol. 19, no. 11, pp. 2114–2135, 2013. View at Google Scholar · View at Scopus
  23. X. Zhang, H.-Q. Zhang, G.-H. Zhu et al., “A novel mono-carbonyl analogue of curcumin induces apoptosis in ovarian carcinoma cells via endoplasmic reticulum stress and reactive oxygen species production,” Molecular Medicine Reports, vol. 5, no. 3, pp. 739–744, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Qu, J. Xiao, H. Zhang et al., “B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway,” International Journal of Biological Sciences, vol. 9, no. 8, pp. 766–777, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Zheng, H. Li, X. Wang et al., “Anticancer effect of a curcumin derivative B63: ROS production and mitochondrial dysfunction,” Current Cancer Drug Targets, vol. 14, no. 2, pp. 156–166, 2014. View at Google Scholar
  26. S. Nagai, M. Kurimoto, K. Washiyama, Y. Hirashima, T. Kumanishi, and S. Endo, “Inhibition of cellular proliferation and induction of apoptosis by curcumin in human malignant astrocytoma cell lines,” Journal of Neuro-Oncology, vol. 74, no. 2, pp. 105–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Schmitt, A. Steyaert, G. Cimoli, and R. Bertrand, “Bax-alpha promotes apoptosis induced by cancer chemotherapy and accelerates the activation of caspase 3-like cysteine proteases in p53 double mutant B lymphoma Namalwa cells,” Cell Death and Differentiation, vol. 5, no. 6, pp. 506–516, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Yu, C. Zhang, H. Wang et al., “Multidrug resistance-associated protein 3 confers resistance to chemoradiotherapy for rectal cancer by regulating reactive oxygen species and caspase-3-dependent apoptotic pathway,” Cancer Letters, vol. 353, no. 2, pp. 182–193, 2014. View at Publisher · View at Google Scholar
  29. H. LeBlanc, D. Lawrence, E. Varfolomeev et al., “Tumor-cell resistance to death receptor—induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax,” Nature Medicine, vol. 8, no. 3, pp. 274–281, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Choudhuri, S. Pal, M. L. Agwarwal, T. Das, and G. Sa, “Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction,” FEBS Letters, vol. 512, no. 1–3, pp. 334–340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Wang, J. Xiao, H. Zhou et al., “A novel monocarbonyl analogue of curcumin, (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway,” Journal of Medicinal Chemistry, vol. 54, no. 11, pp. 3768–3778, 2011. View at Publisher · View at Google Scholar · View at Scopus