Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 510598, 5 pages
http://dx.doi.org/10.1155/2015/510598
Research Article

A Database of Plastid Protein Families from Red Algae and Apicomplexa and Expression Regulation of the moeB Gene

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny Pereulok 19, Moscow 127994, Russia

Received 18 June 2014; Revised 29 August 2014; Accepted 13 September 2014

Academic Editor: William H. Piel

Copyright © 2015 Oleg A. Zverkov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. A. Lyubetsky, A. V. Seliverstov, and O. A. Zverkov, “Elaboration of the homologous plastid-encoded protein families that separate paralogs in magnoliophytes,” Mathematical Biology and Bioinformatics, vol. 8, no. 1, pp. 225–233, 2013 (Russian). View at Google Scholar · View at Scopus
  2. S. van Dongen and C. Abreu-Goodger, “Using MCL to extract clusters from networks,” Methods in Molecular Biology, vol. 804, pp. 281–295, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13, pp. 354–356, 1969. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–280, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  5. F. Le Gall, “Powers of tensors and fast matrix multiplication,” in Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC '14), pp. 296–303, July 2014. View at Publisher · View at Google Scholar
  6. A. V. Smirnov, “The bilinear complexity and practical algorithms for matrix multiplication,” Computational Mathematics and Mathematical Physics, vol. 53, no. 12, pp. 1781–1795, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. A. J. Vilella, J. Severin, A. Ureta-Vidal, L. Heng, R. Durbin, and E. Birney, “EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates,” Genome Research, vol. 19, no. 2, pp. 327–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. I. M. Wallace, O. O'Sullivan, D. G. Higgins, and C. Notredame, “M-Coffee: Combining multiple sequence alignment methods with T-Coffee,” Nucleic Acids Research, vol. 34, no. 6, pp. 1692–1699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Katoh and D. M. Standley, “MAFFT multiple sequence alignment software version 7: improvements in performance and usability,” Molecular Biology and Evolution, vol. 30, no. 4, pp. 772–780, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. A. E. Galashov and A. V. Kel’manov, “A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets,” Automation and Remote Control, vol. 75, no. 4, pp. 595–606, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. A. V. Kel'manov and S. M. Romanchenko, “FPTAS for solving a problem of search for a vector subset,” Diskretnyi Analiz i Issledovanie Operatsii, vol. 21, no. 3, pp. 41–52, 2014 (Russian). View at Google Scholar
  12. C. M. Zmasek and S. R. Eddy, “RIO: analyzing proteomes by automated phylogenomics using resampled inference of orthologs,” BMC Bioinformatics, vol. 3, article 14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Minoda, A. P. M. Weber, K. Tanaka, and S.-Y. Miyagishima, “Nucleus-independent control of the rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae,” Plant Physiology, vol. 154, no. 3, pp. 1532–1540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Cortese, A. B. Caplan, and R. L. Crawford, “Structural, functional, and evolutionary analysis of moeZ, a gene encoding an enzyme required for the synthesis of the Pseudomonas metabolite, pyridine-2,6-bis(thiocarboxylic acid),” BMC Evolutionary Biology, vol. 2, no. 1, article 8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Collén, B. Porcel, W. Carré et al., “Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 13, pp. 5247–5252, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Depriest, D. Bhattacharya, and J. M. López-Bautista, “The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae),” PLoS ONE, vol. 8, no. 7, Article ID e68246, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Glöckner, A. Rosenthal, and K. Valentin, “The structure and gene repertoire of an ancient red algal plastid genome,” Journal of Molecular Evolution, vol. 51, no. 4, pp. 382–390, 2000. View at Google Scholar · View at Scopus
  18. J. C. Hagopian, M. Reis, J. P. Kitajima, D. Bhattacharya, and M. C. De Oliveira, “Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids,” Journal of Molecular Evolution, vol. 59, no. 4, pp. 464–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Janouškovec, S.-L. Liu, P. T. Martone et al., “Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers,” PLoS ONE, vol. 8, no. 3, Article ID e59001, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Ohta, M. Matsuzaki, O. Misumi et al., “Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae,” DNA Research, vol. 10, no. 2, pp. 67–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Reith and J. Munholland, “Complete nucleotide sequence of the Porphyra purpurea chloroplast genome,” Plant Molecular Biology Reporter, vol. 13, no. 4, pp. 333–335, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Wang, Y. Mao, F. Kong et al., “Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis,” PLoS ONE, vol. 8, no. 5, Article ID e65902, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Campbell, G. Presting, M. S. Bennett, and A. R. Sherwood, “Highly conserved organellar genomes in the Gracilariales as inferred using new data from the Hawaiian invasive alga Gracilaria salicornia (Rhodophyta),” Phycologia, vol. 53, no. 2, pp. 109–116, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. V. A. Lyubetsky, A. V. Seliverstov, and O. A. Zverkov, “Transcription regulation of plastid genes involved in sulfate transport in viridiplantae,” BioMed Research International, vol. 2013, Article ID 413450, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. O. A. Zverkov, L. Y. Rusin, A. V. Seliverstov, and V. A. Lyubetsky, “Study of direct repeats in micro evolution of plant mitochondria and plastids based on protein clustering,” Moscow University Biological Sciences Bulletin, vol. 68, no. 2, pp. 58–62, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. O. A. Zverkov, A. V. Seliverstov, and V. A. Lyubetsky, “Plastid-encoded protein families specific for narrow taxonomic groups of algae and protozoa,” Molecular Biology, vol. 46, no. 5, pp. 717–726, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. S. R. Starkenburg, K. J. Kwon, R. K. Jha et al., “A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes,” BMC Genomics, vol. 15, no. 1, article 212, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. Benson, M. Cavanaugh, K. Clark et al., “GenBank,” Nucleic Acids Research, vol. 41, no. 1, pp. D36–D42, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Punta, P. C. Coggill, R. Y. Eberhardt et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 40, no. 1, pp. D290–D301, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. C. J. A. Sigrist, E. de Castro, L. Cerutti et al., “New and continuing developments at PROSITE,” Nucleic Acids Research, vol. 41, no. 1, pp. D344–D347, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. V. A. Lyubetsky, L. I. Rubanov, and A. V. Seliverstov, “Lack of conservation of bacterial type promoters in plastids of Streptophyta,” Biology Direct, vol. 5, article 34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. V. Seliverstov, E. A. Lysenko, and V. A. Lyubetsky, “Rapid evolution of promoters for the plastome gene ndhF in flowering plants,” Russian Journal of Plant Physiology, vol. 56, no. 6, pp. 838–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Homann and G. Link, “DNA-binding and transcription characteristics of three cloned sigma factors from mustard (Sinapis alba L.) suggest overlapping and distinct roles in plastid gene expression,” European Journal of Biochemistry, vol. 270, no. 6, pp. 1288–1300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. E. A. Lysenko, “Plant sigma factors and their role in plastid transcription,” Plant Cell Reports, vol. 26, no. 7, pp. 845–859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. V. A. Lyubetsky and A. V. Seliverstov, “Some algorithms related to finite groups,” Information Processes, vol. 3, no. 1, pp. 39–46, 2003 (Russian). View at Google Scholar
  36. V. A. Lyubetsky and A. V. Seliverstov, “Note on cliques and alignments,” Information Processes, vol. 4, no. 3, pp. 241–246, 2004. View at Google Scholar
  37. T. L. Bailey, M. Boden, F. A. Buske et al., “MEME SUITE: tools for motif discovery and searching,” Nucleic Acids Research, vol. 37, no. 2, pp. W202–W208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. V. A. Lyubetsky, O. A. Zverkov, L. I. Rubanov, and A. V. Seliverstov, “Modeling RNA polymerase competition: the effect of σ-subunit knockout and heat shock on gene transcription level,” Biology Direct, vol. 6, article 3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. V. A. Lyubetsky, O. A. Zverkov, S. A. Pirogov, L. I. Rubanov, and A. V. Seliverstov, “Modeling RNA polymerase interaction in mitochondria of chordates,” Biology Direct, vol. 7, article 26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. A. A. Vladimirov, “Non-crossing matchings,” Problems of Information Transmission, vol. 49, no. 1, pp. 54–57, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  41. M. I. Muro-Pastor and F. J. Florencio, “Regulation of ammonium assimilation in cyanobacteria,” Plant Physiology and Biochemistry, vol. 41, no. 6-7, pp. 595–603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. K. V. Lopatovskaya, A. V. Seliverstov, and V. A. Lyubetsky, “NtcA and NtcB regulons in cyanobacteria and rhodophyta chloroplasts,” Molecular Biology, vol. 45, no. 3, pp. 522–526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Forchhammer, “PII signal transducers: novel functional and structural insights,” Trends in Microbiology, vol. 16, no. 2, pp. 65–72, 2008. View at Publisher · View at Google Scholar · View at Scopus