Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 627471, 10 pages
http://dx.doi.org/10.1155/2015/627471
Research Article

Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In Vitro Assays

1Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
2Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
3Unit of Biostatistics and Research Methodology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
4Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
5Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

Received 20 September 2014; Revised 14 December 2014; Accepted 15 December 2014

Academic Editor: Saulius Butenas

Copyright © 2015 Abuzar Elnager et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Grines, P. Serruys, and W. W. O'Neill, “Fibrinolytic therapy: is it a treatment of the past?” Circulation, vol. 107, no. 20, pp. 2538–2542, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Takada, Y. Takada, and T. Urano, “The physiological aspects of fibrinolysis,” Thrombosis Research, vol. 76, no. 1, pp. 1–31, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Anwar, I. N. Khan, S. Barua, A. T. M. Kamal, S. M. Hosen, and M. H. Kawsar, “Assessment of thrombolytic & cytotoxic activity of herbal preparations originated from botanical source of bangladesh,” Journal of Applied Pharmaceutical Science, vol. 1, no. 7, pp. 77–80, 2011. View at Google Scholar · View at Scopus
  4. X. Ju, X. Cao, Y. Sun et al., “Purification and characterization of a fibrinolytic enzyme from Streptomyces sp. XZNUM 00004,” World Journal of Microbiology and Biotechnology, vol. 28, no. 7, pp. 2479–2486, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. Y. Mine, A. H. Kwan Wong, and B. Jiang, “Fibrinolytic enzymes in Asian traditional fermented foods,” Food Research International, vol. 38, no. 3, pp. 243–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Talens, Novel Fibrin Clot Components: Identification, Characterization and Function, Erasmus University, Rotterdam, Netherlands, 2013.
  7. M. Iraz, E. Fadillioǧlu, S. Taşdemir, B. Ateş, and S. Erdoǧan, “Dose dependent effects of caffeic acid phenethyl ester on heart rate and blood pressure in rats,” European Journal of General Medicine, vol. 2, no. 2, pp. 69–75, 2005. View at Google Scholar · View at Scopus
  8. T. Nagaoka, A. H. Banskota, Y. Tezuka, K. Midorikawa, K. Matsushige, and S. Kadota, “Caffeic acid phenethyl ester (CAPE) analogues: potent nitric oxide inhibitors from the Netherlands propolis,” Biological & Pharmaceutical Bulletin, vol. 26, no. 4, pp. 487–491, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Maffia, A. Ianaro, B. Pisano et al., “Beneficial effects of caffeic acid phenethyl ester in a rat model of vascular injury,” British Journal of Pharmacology, vol. 136, no. 3, pp. 353–360, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. A. Korish, “Effect of caffeic acid phenethyl ester on the hemostatic alterations associated with toxic-induced acute liver failure,” Blood Coagulation and Fibrinolysis, vol. 21, no. 2, pp. 158–163, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. R. Markiewicz-Zukowska, H. Car, S. K. Naliwajko et al., “Ethanolic extract of propolis, chrysin, CAPE inhibit human astroglia cells,” Advances in Medical Sciences, vol. 57, no. 2, pp. 208–216, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. Akyol, G. Ozturk, Z. Ginis, F. Armutcu, M. R. Yigitoglu, and O. Akyol, “In vivo and in vitro antineoplastic actions of Caffeic Acid Phenethyl Ester (CAPE): therapeutic perspectives,” Nutrition and Cancer, vol. 65, no. 4, pp. 515–526, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. E. Szliszka, Z. P. Czuba, M. Domino, B. Mazur, G. Zydowicz, and W. Krol, “Ethanolic extract of propolis (EEP) enhances the apoptosis-inducing potential of TRAIL in cancer cells,” Molecules, vol. 14, no. 2, pp. 738–754, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. P. del Boccio and D. Rotilio, “Quantitative analysis of caffeic acid phenethyl ester in crude propolis by liquid chromatography-electrospray ionization mass spectrometry,” Journal of Separation Science, vol. 27, no. 7-8, pp. 619–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. D. Wagh and R. D. Borkar, “Indian propolis: a potential natural antimicrobial and antifungal agent,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 4, pp. 12–17, 2012. View at Google Scholar · View at Scopus
  16. T. H. Ashour, “Preventative effects of caffeic acid phenyl ester on cadmium intoxication induced hematological and blood coagulation disturbances and hepatorenal damage in rats,” ISRN Hematology, vol. 2014, Article ID 764754, 7 pages, 2014. View at Publisher · View at Google Scholar · View at PubMed
  17. C. Gebhard, B. E. Stähli, S. Largiadèr et al., “Caffeic acid phenethyl ester inhibits endothelial tissue factor expression,” Biological and Pharmaceutical Bulletin, vol. 36, no. 6, pp. 1032–1035, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. S. Song, E.-H. Park, G. M. Hur et al., “Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity,” Cancer Letters, vol. 175, no. 1, pp. 53–61, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Parlakpinar, E. Sahna, A. Acet, B. Mizrak, and A. Polat, “Protective effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia-reperfusion-induced apoptotic cell death,” Toxicology, vol. 209, no. 1, pp. 1–14, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. P. Michaluart, J. L. Masferrer, A. M. Carothers et al., “Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation,” Cancer Research, vol. 59, no. 10, pp. 2347–2352, 1999. View at Google Scholar · View at Scopus
  21. M. Khan, C. Elango, M. A. Ansari, I. Singh, and A. K. Singh, “Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia,” Journal of Neurochemistry, vol. 102, no. 2, pp. 365–377, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. Son, E. B. Lobkowsky, and B. A. Lewis, “Caffeic Acid Phenethyl Ester (CAPE): synthesis and X-ray crystallographic analysis,” Chemical and Pharmaceutical Bulletin, vol. 49, no. 2, pp. 236–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J.-H. Kim and Y. S. Kim, “A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea,” Bioscience, Biotechnology and Biochemistry, vol. 63, no. 12, pp. 2130–2136, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. W. A. Hassanein, E. Kotb, N. M. Awny, and Y. A. El-Zawahry, “Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42,” Journal of Biosciences, vol. 36, no. 5, pp. 773–779, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Radnaabazar, C. M. Park, J. H. Kim, J. Cha, and Y.-S. Song, “Fibrinolytic and antiplatelet aggregation properties of a recombinant Cheonggukjang kinase,” Journal of Medicinal Food, vol. 14, no. 6, pp. 625–629, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. S. H. Wang, C. Zhang, Y. L. Yang, M. Diao, and M. F. Bai, “Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547,” World Journal of Microbiology and Biotechnology, vol. 24, no. 4, pp. 475–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Elnager, W. Z. Abdullah, R. Hassan et al., “In vitro whole blood clot lysis for fibrinolytic activity study using D-dimer and confocal microscopy,” Advances in Hematology, vol. 2014, Article ID 814684, 8 pages, 2014. View at Publisher · View at Google Scholar · View at PubMed
  28. K. C. Gersh, C. Nagaswami, and J. W. Weisel, “Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes,” Thrombosis and Haemostasis, vol. 102, no. 6, pp. 1169–1175, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. N. Wohner, P. Sótonyi, R. MacHovich et al., “Lytic resistance of fibrin containing red blood cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 10, pp. 2306–2313, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. Abuzar, H. Rosline, I. Zamzuri, M. M. Zulkifli, N. Wan-Arfah, and A. wan Zaidah, “Fibrinolytic activity of Caffeic Acid Phenethyl Ester (CAPE): in-vitro study on whole blood clot,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 3, pp. 459–462, 2013. View at Google Scholar · View at Scopus
  31. C. B. Marschner, C. R. Bjørnvad, A. T. Kristensen, and B. Wiinberg, “Thromboelastography results on citrated whole blood from clinically healthy cats depend on modes of activation,” Acta Veterinaria Scandinavica, vol. 52, no. 1, article 38, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Thakur and A. B. Ahmed, “A review of thromboelastography,” International Journal of Perioperative Ultrasound and Applied Technologies, vol. 1, no. 1, pp. 25–29, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Zmuda, D. Neofotistos, and C.-H. Ts'ao, “Effects of unfractionated heparin, low-molecular-weight heparin, and heparinoid on thromboelastographic assay of blood coagulation,” American Journal of Clinical Pathology, vol. 113, no. 5, pp. 725–731, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. A. Coppell, U. Thalheimer, A. Zambruni et al., “The effects of unfractionated heparin, low molecular weight heparin and danaparoid on the thromboelastogram (TEG): an in-vitro comparison of standard and heparinase-modified TEGs with conventional coagulation assays,” Blood Coagulation and Fibrinolysis, vol. 17, no. 2, pp. 97–104, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. R. C. Carroll, J. M. Gerrard, and J. M. Gilliam, “Clot retraction facilitates clot lysis,” Blood, vol. 57, no. 1, pp. 44–48, 1981. View at Google Scholar · View at Scopus
  36. M. S. Park, W. Z. Martini, M. A. Dubick et al., “Thromboelastography as a better indicator of postinjury hypercoagulable state than prothrombin time or activated partial thromboplastin time,” The Journal of Trauma, vol. 67, no. 2, pp. 266–276, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. T.-G. Chen, J.-J. Lee, K.-H. Lin, C.-H. Shen, D.-S. Chou, and J.-R. Sheu, “Antiplatelet activity of caffeic acid phenethyl ester is mediated through a cyclic GMP-dependent pathway in human platelets,” The Chinese Journal of Physiology, vol. 50, no. 3, pp. 121–126, 2007. View at Google Scholar · View at Scopus
  38. J. W. Weisel, “Structure of fibrin: impact on clot stability,” Journal of Thrombosis and Haemostasis, vol. 5, no. 1, pp. 116–124, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. T. W. Stief, “In vitro simulation of therapeutic thrombolysis with microtiter plate clot-lysis assay,” Clinical and Applied Thrombosis/Hemostasis, vol. 12, no. 1, pp. 21–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Schwarzenberg, S. Müller-Hülsbeck, J. Brossman, C. C. Glüer, H. D. Bruhn, and M. Heller, “Hyperthermic fibrinolysis with rt-PA: in vitro results,” CardioVascular and Interventional Radiology, vol. 21, no. 2, pp. 142–145, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Sabovic, H. R. Lijnen, D. Keber, and D. Collen, “Effect of retraction on the lysis of human clots with fibrin specific and non-fibrin specific plasminogen activators,” Thrombosis and Haemostasis, vol. 62, no. 4, pp. 1083–1087, 1989. View at Google Scholar · View at Scopus
  42. G. Hsiao, J. J. Lee, K. H. Lin et al., “Characterization of a novel and potent collagen antagonist, caffeic acid phenethyl ester, in human platelets: in vitro and in vivo studies,” Cardiovascular Research, vol. 75, no. 4, pp. 782–792, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. N. Márquez, R. Sancho, A. Macho, M. A. Calzado, B. L. Fiebich, and E. Muñoz, “Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-κB transcription factors,” Journal of Pharmacology and Experimental Therapeutics, vol. 308, no. 3, pp. 993–1001, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. E. Altuǧ, Y. Serarslan, R. Bal et al., “Caffeic acid phenethyl ester protects rabbit brains against permanent focal ischemia by antioxidant action: a biochemical and planimetric study,” Brain Research, vol. 1201, pp. 135–142, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. López, A. Ojeda, and C. L. Arocha-Piñango, “In vitro clot lysis: a comparative study of two methods,” Thrombosis Research, vol. 97, no. 2, pp. 85–87, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Coll-Sangrona and C. L. Arocha-Piñango, “Fibrinolytic action on fresh human clots of whole body extracts and two semipurified fractions from Lonomia achelous caterpillar,” Brazilian Journal of Medical and Biological Research, vol. 31, no. 6, pp. 779–784, 1998. View at Google Scholar · View at Scopus
  47. G. J. Shaw, A. Dhamija, N. Bavani, K. R. Wagner, and C. K. Holland, “Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis,” Physics in Medicine and Biology, vol. 52, no. 11, article 2953, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. S. Prasad, R. S. Kashyap, J. Y. Deopujari, H. J. Purohit, G. M. Taori, and H. F. Daginawala, “Development of an in vitro model to study clot lysis activity of thrombolytic drugs,” Thrombosis Journal, vol. 4, article 14, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. Blombäck, S. He, N. Bark, H. N. Wallen, and M. Elg, “Effects on fibrin network porosity of anticoagulants with different modes of action and reversal by activated coagulation factor concentrate,” British Journal of Haematology, vol. 152, no. 6, pp. 758–765, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus