Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 648283, 9 pages
http://dx.doi.org/10.1155/2015/648283
Research Article

Semiautomatic, Quantitative Measurement of Aortic Valve Area Using CTA: Validation and Comparison with Transthoracic Echocardiography

1Center for Medical Imaging North East Netherlands (CMI-NEN), Department of Radiology, University of Groningen, University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, Netherlands
2Department of Radiology, University of Groningen, University Medical Center, P.O. Box 30001, 9700 RB Groningen, Netherlands
3Department of Radiology, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, Netherlands

Received 12 September 2014; Accepted 3 April 2015

Academic Editor: Michael Gotzmann

Copyright © 2015 V. Tuncay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Objective. The aim of this work was to develop a fast and robust (semi)automatic segmentation technique of the aortic valve area (AVA) MDCT datasets. Methods. The algorithm starts with detection and cropping of Sinus of Valsalva on MPR image. The cropped image is then binarized and seed points are manually selected to create an initial contour. The contour moves automatically towards the edge of aortic AVA to obtain a segmentation of the AVA. AVA was segmented semiautomatically and manually by two observers in multiphase cardiac CT scans of 25 patients. Validation of the algorithm was obtained by comparing to Transthoracic Echocardiography (TTE). Intra- and interobserver variability were calculated by relative differences. Differences between TTE and MDCT manual and semiautomatic measurements were assessed by Bland-Altman analysis. Time required for manual and semiautomatic segmentations was recorded. Results. Mean differences from TTE were −0.19 (95% CI: −0.74 to 0.34) cm2 for manual and −0.10 (95% CI: −0.45 to 0.25) cm2 for semiautomatic measurements. Intra- and interobserver variability were 8.4 ± 7.1% and 27.6 ± 16.0% for manual, and 5.8 ± 4.5% and 16.8 ± 12.7% for semiautomatic measurements, respectively. Conclusion. Newly developed semiautomatic segmentation provides an accurate, more reproducible, and faster AVA segmentation result.