Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 675260, 25 pages
http://dx.doi.org/10.1155/2015/675260
Research Article

Phylogeography of Pteronotropis signipinnis, P. euryzonus, and the P. hypselopterus Complex (Teleostei: Cypriniformes), with Comments on Diversity and History of the Gulf and Atlantic Coastal Streams

1Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
2Department of Biology, Saint Louis Community College-Meramec, 11333 Big Bend Road, St. Louis, MO 63122, USA

Received 11 July 2014; Revised 4 November 2014; Accepted 17 December 2014

Academic Editor: William H. Piel

Copyright © 2015 Richard L. Mayden and Jason Allen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Avis, Phylogeography: The History and Formation of Species, Harvard University Press, Cambridge, Mass, USA, 2000.
  2. J. V. Crisci, L. Katinas, and P. Posadas, Historical Biogeography: An Introduction, Harvard University Press, Cambridge, Mass, USA, 2003.
  3. E. O. Wiley and R. L. Mayden, “Species and speciation in phylogenetic systematics, with examples from North American fish fauna,” Annals of the Missouri Botanical Garden, vol. 72, no. 4, pp. 596–635, 1985. View at Google Scholar
  4. C. C. Swift, C. R. Gilbert, S. A. Bortone, and R. W. Yerger, “Zoogeography of the freshwater fishes of the southeastern United States: Savanna River to Lake Pontchartrain,” in The Zoogeography of North American Fishes, C. H. Hocutt and E. O. Wiley, Eds., Wiley Interscience, New York, NY, USA, 1986. View at Google Scholar
  5. B. C. Nagle and A. M. Simons, “Rapid diversification in the North American minnow genus Nocomis,” Molecular Phylogenetics and Evolution, vol. 63, no. 3, pp. 639–649, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Sandel, Evolutionary relationships and historical biogeography of pygmy sunfishes (Percomorphacea: Elassoma) [Ph.D. thesis], University of Alabama, Tuscaloosa, Ala, USA, 2012.
  7. R. D. Suttkus and M. F. Mettee, “Analysis of four species of Notropis included in the subgenus Pteronotropis fowler, with comments on relationships, origins, and dispersion,” Geological Survey of Alabama Bulletin 170, Geological Survey of Alabama, 2001. View at Google Scholar
  8. R. L. Mayden and J. S. Allen, “Molecular systematics of the phoxinin genus Pteronotropis (Otophysi: Cypriniformes),” BioMed Research International. In press.
  9. A. R. Templeton, “Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history,” Molecular Ecology, vol. 7, no. 4, pp. 381–397, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Bernatchez and C. C. Wilson, “Comparative phylogeography of Nearctic and Palearctic fishes,” Molecular Ecology, vol. 7, no. 4, pp. 431–452, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Bernatchez, “The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation,” Evolution, vol. 55, no. 2, pp. 351–379, 2001. View at Google Scholar · View at Scopus
  12. A. R. Rogers and H. Harpending, “Population growth makes waves in the distribution of pairwise genetic differences,” Molecular Biology and Evolution, vol. 9, no. 3, pp. 552–569, 1992. View at Google Scholar · View at Scopus
  13. S. Schneider and L. Excoffier, “Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA,” Genetics, vol. 152, no. 3, pp. 1079–1089, 1999. View at Google Scholar · View at Scopus
  14. H. C. Harpending, M. Batzer, M. Gurven, L. B. Jorde, A. R. Rogers, and S. T. Sherry, “Genetic traces of ancient demography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1961–1967, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. P. B. Berendzen, A. M. Simons, and R. M. Wood, “Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): genetic evidence for the existence of the ancient Teays River,” Journal of Biogeography, vol. 30, no. 8, pp. 1139–1152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. T. D. Kocher and K. L. Carleton, “Base substitution in fish mitochondrial DNA: patterns and rates,” in Molecular Systematics of Fishes, T. D. Kocher and C. A. Stepien, Eds., Academic Press, San Diego, Calif, USA, 1997. View at Google Scholar
  17. W. Chen and R. L. Mayden, “Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world's largest clade of freshwater fishes: further evidence from six nuclear genes,” Molecular Phylogenetics and Evolution, vol. 52, no. 2, pp. 544–549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. L. Mayden and W. J. Chen, “The world's smallest vertebrate species of the genus Paedocypris: a new family of freshwater fishes and the sister group to the world's most diverse clade of freshwater fishes (Teleostei: Cypriniformes),” Molecular Phylogenetics and Evolution, vol. 57, no. 1, pp. 152–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Bermingham and J. C. Avise, “Molecular zoogeography of freshwater fishes in the southeastern United States,” Genetics, vol. 113, no. 4, pp. 939–965, 1986. View at Google Scholar
  20. G. B. Pauly, O. Piskurek, and H. B. Shaffer, “Phylogeographic concordance in the southeastern United States: the flatwoods salamander, Ambystoma cingulatum, as a test case,” Molecular Ecology, vol. 16, no. 2, pp. 415–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. T. Boschung and R. L. Mayden, Fishes of Alabama, Smithsonian Books, Washington, DC, USA, 2004.
  22. W. D. Thornbury, Regional Geomorphology of the United States, John Wiley and Sons, New York, NY, USA, 1965.
  23. M. E. Raley and R. M. Wood, “Molecular systematics of members of the Notropis dorsalis species group (Actinopterygii: Cyprinidae),” Copeia, vol. 2001, no. 3, pp. 638–645, 2001. View at Google Scholar · View at Scopus
  24. R. D. Suttkus, B. A. Porter, and B. J. Freeman, “The status and infraspecific variation of Notropis stonei Fowleri,” Proceedings of the American Philosophical Society, vol. 147, no. 4, pp. 354–376, 2003. View at Google Scholar
  25. A. M. Simons, P. B. Berendzen, and R. L. Mayden, “Molecular systematics of North American phoxinin genera (Actinopterygii: Cyprinidae) inferred from mitochondrial 12S and 16S ribosomal RNA sequences,” Zoological Journal of the Linnean Society, vol. 139, no. 1, pp. 63–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. R. L. Mayden, A. M. Simons, R. M. Wood, P. M. Harris, and B. R. Kuhajda, “Molecular Systematics and classification of North American Notropin shiners and minnows (Cypriniformes: Cyprinidae),” in Studies of North American Desert Fishes in Honor of E.P.(Phil) Pister, Conservationist, M. D. L. Lozano-Vilano and A. J. Contreras-Balderas, Eds., Universidad Autonoma de Nuevo, Leon Monterrey, Mexico, 2006. View at Google Scholar
  27. A. P. Bufalino and R. L. Mayden, “Phylogenetic relationships of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) as inferred from S7 nuclear DNA sequences,” Molecular Phylogenetics and Evolution, vol. 55, no. 1, pp. 143–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. P. Bufalino and R. L. Mayden, “Molecular phylogenetics of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) based on RAG1 and S7 nuclear DNA sequence data,” Molecular Phylogenetics and Evolution, vol. 55, no. 1, pp. 274–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. M. Bailey and H. W. Robison, “Notropis hubbsi, a new cyprinid fish from the Mississippi River Basin, with comments on Notropis welaka,” University of Michigan Museum of Zoology Occasional Papers 683, University of Michigan Museum of Zoology, 1978. View at Google Scholar
  30. R. L. Mayden, Phylogenetic Studies of North American Minnows: With Emphasis on the Genus Cyprinella (Teleostei, Cypriniformes), vol. 80 of Miscellaneous Publications, Museum of Natural History, University of Kansas, Lawrence, Kan, USA, 1989. View at Publisher · View at Google Scholar
  31. T. A. Hall, BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis, Version 5. 0. 9, Department of Microbiology, North Carolina State University, Raleigh, NC, USA, 2001.
  32. D. S. Sikes and P. O. Lewis, PAUPRat: PAUP* Implementation of the Parsimony Ratchet, Beta Software, Version 1, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Conn, USA, 2001.
  33. D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4, Sinauer Associates, Sunderland, Mass, USA, 2003.
  34. D. Zwickl, Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the Maximum Likelihood Criterion [Ph.D. thesis], University of Texas at Austin, Austin, Tex, USA, 2006.
  35. D. Zwickl, Garli. Genetic Algorithm for Rapid Likelihood Inference. Version 0. 951, 2006, http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html.
  36. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985. View at Google Scholar
  37. F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kumar, S. K. Tamura, and M. Nei, “MEGA3: integrated software for molecular evolutionary genetic analysis and sequence alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150–163, 2004. View at Google Scholar · View at Scopus
  39. A. R. Templeton, E. Boerwinkle, and C. F. Sing, “A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila,” Genetics, vol. 117, no. 2, pp. 343–351, 1987. View at Google Scholar · View at Scopus
  40. A. R. Templeton and C. F. Sing, “A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination,” Genetics, vol. 134, no. 2, pp. 659–669, 1993. View at Google Scholar · View at Scopus
  41. M. Clement, D. Posada, and K. A. Crandall, “TCS: a computer program to estimate gene genealogies,” Molecular Ecology, vol. 9, no. 10, pp. 1657–1659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Rozas and R. Rozas, “DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis,” Bioinformatics, vol. 15, no. 2, pp. 174–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. T. J. Near and M. F. Benard, “Rapid allopatric speciation in logperch darters (Percidae: Percina),” Evolution, vol. 58, no. 12, pp. 2798–2808, 2004. View at Google Scholar · View at Scopus
  44. P. B. Berendzen, T. Gamble, and A. M. Simons, “Phylogeography of the bigeye chub Hybopsis amblops (Teleostei: Cypriniformes): early Pleistocene diversification and post-glacial range expansion,” Journal of Fish Biology, vol. 73, no. 8, pp. 2021–2039, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. R. M. Bailey, “An annotated checklist and biogeographic analysis of the insular herpetofauna of the Apalachicola region, Florida,” Herpetologica, vol. 27, no. 4, pp. 406–430, 1971. View at Google Scholar
  46. D. B. Means, “Aspects of the significance to terrestrial vertebrates of the Apalachicola River Drainage Basin, Florida,” Florida Marine Research Publications, vol. 26, pp. 37–67, 1977. View at Google Scholar
  47. R. E. Jenkins, Systematic studies of the catostomid fish tribe Moxostomatini [Ph.D. thesis], Cornell University, New York, NY, USA, 1970.
  48. A. Y. Kristmundsdóttir and J. R. Gold, “Systematics of the blacktail shiner (Cyprinella venusta) inferred from analysis of mitochondrial DNA,” Copeia, vol. 1996, no. 4, pp. 773–783, 1996. View at Google Scholar · View at Scopus
  49. B. M. Burr and R. C. Cashner, “Campostoma pauciradii, a new cyprinid fish from southeastern United States, with a review of related forms,” Copeia, vol. 1983, pp. 101–116, 1983. View at Google Scholar
  50. D. A. Neely, J. D. Williams, and R. L. Mayden, “Two new sculpins of the genus Cottus (Teleostei: Cottidae) from rivers of Eastern North America,” Copeia, vol. 2007, no. 3, pp. 641–655, 2007. View at Google Scholar · View at Scopus
  51. S. D. Marshall, W. R. Hoeh, and M. A. Deyrup, “Biogeography and conservation biology of Florida's Geolycosa wolf spiders: threatened spiders in endangered ecosystems,” Journal of Insect Conservation, vol. 4, no. 1, pp. 11–21, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. N. G. Swenson and D. J. Howard, “Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America,” The American Naturalist, vol. 166, no. 5, pp. 581–591, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. R. L. Mayden, “Consilience and a hierarchy of species concepts: advances toward closure on the species puzzle,” Journal of Nematology, vol. 31, no. 2, pp. 95–116, 1999. View at Google Scholar · View at Scopus
  54. R. L. Mayden, “On biological species, species concepts and individuation in the natural world,” Fish and Fisheries, vol. 3, no. 3, pp. 171–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. R. L. Mayden, “Species, trees, characters, and concepts: ongoing issues, diverse ideologies, and a time for reflection and change,” in The Species Problem—Ongoing Issues, I. Y. Pavlinov, Ed., pp. 171–191, InTech, 2013. View at Publisher · View at Google Scholar
  56. Q. D. Wheeler and R. Meier, Species Concepts and Phylogenetic Theory: A Debate, Columbia University Press, New York, NY, USA, 2000.
  57. E. O. Wiley, Phylogenetics: The Theory and Practice of Phylogenetic Systematics, Wiley-Interscience, New York, NY, USA, 1981.
  58. E. O. Wiley and R. L. Mayden, “The evolutionary species concept,” in Species Concepts and Phylogenetic Theory: A Debate, Q. D. Wheeler and R. Meier, Eds., Columbia University Press, New York, NY, USA, 2000. View at Google Scholar
  59. E. O. Wiley and R. L. Mayden, “Comments on alternative species concepts,” in Species Concepts and Phylogenetic Theory: A Debate, Q. D. Wheeler and R. Meier, Eds., Columbia University Press, New York, NY, USA, 2000. View at Google Scholar
  60. E. O. Wiley and R. L. Mayden, “A reply to our critics,” in Species Concepts and Phylogenetic Theory: A Debate, Q. D. Wheeler and R. Meier, Eds., Columbia University Press, New York, NY, USA, 2000. View at Google Scholar
  61. K. J. Roe, R. L. Mayden, and P. M. Harris, “Systematics and zoogeography of the rock basses (Centrarchidae: Ambloplites),” Copeia, vol. 2008, no. 4, pp. 858–867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. M. Bailey and R. D. Suttkus, “Notropis signipinnis, a new cyprinid fish from the southeastern United States,” University of Michigan Museum of Zoology Occasional Papers 542, University of Michigan Museum of Zoology, 1952. View at Google Scholar
  63. T. J. Near, L. M. Page, and R. L. Mayden, “Intraspecific phylogeography of Percina evides (Percidae: Etheostomatinae): an additional test of the Central Highlands pre-Pleistocene vicariance hypothesis,” Molecular Ecology, vol. 10, no. 9, pp. 2235–2240, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. Hardy, J. M. Grady, and E. J. Routman, “Intraspecific phylogeography of the slender madtom: the complex evolutionary history of the Central Highlands of the United States,” Molecular Ecology, vol. 11, no. 11, pp. 2393–2403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. J. F. Switzer, Molecular systematics and phylogeography of the Etheostoma variatum species group (Actinopterygii: Percidae) [Ph.D. thesis], Saint Louis University, St. Louis, Mo, USA, 2004.
  66. T. J. Near and B. P. Keck, “Dispersal, vicariance, and timing of diversification in Nothonotus darters,” Molecular Ecology, vol. 14, no. 11, pp. 3485–3496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. J. M. Ray, R. M. Wood, and A. M. Simons, “Phylogeography and post-glacial colonization patterns of the rainbow darter, Etheostoma caeruleum (Teleostei: Percidae),” Journal of Biogeography, vol. 33, no. 9, pp. 1550–1558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. P. B. Berendzen, A. M. Simons, R. M. Wood, T. E. Dowling, and C. L. Secor, “Recovering cryptic diversity and ancient drainage patterns in eastern North America: historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes),” Molecular Phylogenetics and Evolution, vol. 46, no. 2, pp. 721–737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Dominik and A. M. Simons, “Cryptic speciation reversal in the Etheostoma zonale (Teleostei: Percidae) species group, with an examination of the effect of recombination and introgression on species tree inference,” Molecular Phylogenetic and Evolution, vol. 70, no. 1, pp. 13–28, 2014. View at Google Scholar
  70. R. L. Mayden, Phylogenetic studies of North American minnows, with emphasis on the genus Cyprinella (Teleostei: Cypriniformes) [Ph.D. thesis], University of Kansas, Lawrence, Kan, USA, 1985.
  71. W. W. Dimmick and R. Lawson, “Phylogenetic relationships of members of the genus Pteronotropis inferred from parsimony analysis of allozymic and morphological data (Cyprinidae: Cypriniformes),” Biochemical Systematics and Ecology, vol. 19, no. 5, pp. 413–419, 1991. View at Google Scholar · View at Scopus
  72. A. M. Simons, K. E. Knott, and R. L. Mayden, “Assessment of monophyly of the minnow genus Pteronotropis (Teleostei: Cyprinidae),” Copeia, vol. 2000, no. 4, pp. 1068–1075, 2000. View at Google Scholar · View at Scopus
  73. R. D. Suttkus, A taxonomic study of five cyprinid fishes related to Notropis hypselopterus of southeastern United States [Ph.D. thesis], Cornell University, New York, NY, USA, 1950.
  74. M. L. Warren, B. M. Burr, S. J. Walsh et al., “Diversity, distribution, and conservation status of the native freshwater fishes of the southern United States,” Fisheries, vol. 25, no. 10, pp. 7–31, 2000. View at Google Scholar · View at Scopus
  75. T. J. Near, T. W. Kassler, J. B. Koppelman, C. B. Dillman, and D. P. Philipp, “Speciation in North American black basses, Micropterus (Actinopterygii: Centrarchidae),” Evolution, vol. 57, no. 7, pp. 1610–1621, 2003. View at Google Scholar · View at Scopus
  76. R. L. Mayden, “A hierarchy of species concepts: the denouement in the saga of species problem,” in Species: The Units of Biodiversity, M. F. Claridge, H. A. Dawah, and M. R. Wilson, Eds., Chapman and Hall, London, UK, 1997. View at Google Scholar
  77. H. Shimodaira and M. Hasegawa, “Multiple comparisons of log-likelihoods with applications to phylogenetic inference,” Molecular Biology and Evolution, vol. 16, no. 8, pp. 1114–1116, 1999. View at Google Scholar · View at Scopus
  78. W. P. Maddison, “Gene trees in species trees,” Systematic Biology, vol. 46, no. 3, pp. 523–536, 1997. View at Google Scholar · View at Scopus
  79. D. J. Funk and K. E. Omland, “Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA,” Annual Review of Ecology, Evolution, and Systematics, vol. 34, pp. 397–423, 2003. View at Google Scholar · View at Scopus
  80. J. C. Avise, Molecular Markers, Natural History, and Evolution, Sinauer Associates, Sunderland, Mass, USA, 2nd edition, 2004.
  81. J. M. Rhymer and D. Simberloff, “Extinction by hybridization and introgression,” Annual Review of Ecology and Systematics, vol. 27, pp. 83–109, 1996. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Sang and Y. Zhong, “Testing hybridization hypotheses based on incongruent gene trees,” Systematic Biology, vol. 49, no. 3, pp. 422–434, 2000. View at Google Scholar · View at Scopus