Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 684945, 10 pages
http://dx.doi.org/10.1155/2015/684945
Research Article

Construction of a gE-Deleted Pseudorabies Virus and Its Efficacy to the New-Emerging Variant PRV Challenge in the Form of Killed Vaccine

1National Research Center for Veterinary Medicine, Road Cuiwei, High-Tech District, Luoyang 471003, China
2College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China

Received 7 March 2015; Revised 10 April 2015; Accepted 16 April 2015

Academic Editor: Akikazu Sakudo

Copyright © 2015 Tongyan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Müller, E. C. Hahn, F. Tottewitz et al., “Pseudorabies virus in wild swine: a global perspective,” Archives of Virology, vol. 156, no. 10, pp. 1691–1705, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. E. Oliver, “Aujeszky's disease,” Australian Veterinary Journal, vol. 66, no. 12, pp. 432–433, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. T. C. Mettenleiter, “Pseudorabies (Aujeszky’s disease) virus: state of the art,” Acta Veterinaria Hungarica, vol. 42, pp. 153–177, 1994. View at Google Scholar
  4. X. Yu, Z. Zhou, D. Hu et al., “Pathogenic pseudorabies virus, China, 2012,” Emerging Infectious Diseases, vol. 20, no. 1, pp. 102–104, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. T.-Q. An, J.-M. Peng, Z.-J. Tian et al., “Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012,” Emerging Infectious Diseases, vol. 19, no. 11, pp. 1749–1755, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Luo, N. Li, X. Cong et al., “Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China,” Veterinary Microbiology, vol. 174, no. 1-2, pp. 107–115, 2014. View at Publisher · View at Google Scholar
  7. R. Wu, C. Bai, J. Sun, S. Chang, and X. Zhang, “Emergence of virulent pseudorabies virus infection in Northern China,” Journal of Veterinary Science, vol. 14, no. 3, pp. 363–365, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. O. S. Morenkov, N. Fodor, Y. A. Sobko, and I. Fodor, “Immunological characterisation of glycoprotein E of Aujeszky's disease virus,” Virus Research, vol. 51, no. 1, pp. 65–79, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Hulse-Post, J. Franks, K. Boyd et al., “Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks,” Journal of Virology, vol. 81, no. 16, pp. 8515–8524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-H. Wang, J. Yuan, H.-Y. Qin et al., “A novel gE-deleted pseudorabies virus (PRV) provides rapid and complete protection from lethal challenge with the PRV variant emerging in Bartha-K61-vaccinated swine population in China,” Vaccine, vol. 32, no. 27, pp. 3379–3385, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Gu, J. Dong, J. Wang et al., “A novel inactivated gE/gI deleted pseudorabies virus (PRV) vaccine completely protects pigs from an emerged variant PRV challenge,” Virus Research, vol. 195, pp. 57–63, 2015. View at Google Scholar
  12. A. Lipowski, “Evaluation of efficacy and safety of Aujeszky's disease vaccines,” Polish Journal of Veterinary Sciences, vol. 9, no. 1, pp. 75–79, 2006. View at Google Scholar · View at Scopus