Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 732573, 9 pages
http://dx.doi.org/10.1155/2015/732573
Research Article

Development of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Trichosporon asahii in Experimental and Clinical Samples

1Department of Dermatology, General Hospital of Beijing Military Command of PLA, No.5, Nanmencang, Dongcheng District, Beijing 100010, China
2The Clinical Medical College in the Beijing Military Region of Second Military Medical University of PLA, Beijing 100700, China

Received 18 September 2014; Accepted 2 January 2015

Academic Editor: Mansour El-Matbouli

Copyright © 2015 Jianfeng Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. Chagas-Neto, G. M. Chaves, and A. L. Colombo, “Update on the genus Trichosporon,” Mycopathologia, vol. 166, no. 3, pp. 121–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Takamura, T. Oono, H. Kanzaki, and J. Arata, “Disseminated Trichosporonosis with Trichosporon asahii,” European Journal of Dermatology, vol. 9, no. 7, pp. 577–579, 1999. View at Google Scholar · View at Scopus
  3. T. Itoh, H. Hosokawa, U. Kohdera, N. Toyazaki, and Y. Asada, “Disseminated infection with Trichosporon asahii,” Mycoses, vol. 39, no. 5-6, pp. 195–199, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Nishiura, K. Nakagawa-Yoshida, M. Suga, T. Shinoda, E. Guého, and M. Ando, “Assignment and serotyping of Trichosporon species: the causative agents of summer-type hypersensitivity pneumonitis,” Journal of Medical and Veterinary Mycology, vol. 35, no. 1, pp. 45–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Tashiro, H. Nagai, H. Nagaoka, Y. Goto, P. Kamberi, and M. Nasu, “Trichosporon beigelii pneumonia in patients with hematologic malignancies,” Chest, vol. 108, no. 1, pp. 190–195, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Moretti-Branchini, K. Fukushima, A. Z. Schreiber et al., “Trichosporon species infection in bone marrow transplanted patients,” Diagnostic Microbiology and Infectious Disease, vol. 39, no. 3, pp. 161–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. R. Ebright, M. R. Fairfax, and J. A. Vazquez, “Trichosporon asahii, a non-Candida yeast that caused fatal septic shock in a patient without cancer or neutropenia,” Clinical Infectious Diseases, vol. 33, no. 5, pp. E28–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. A. Ghiasian, A. H. Maghsood, and S. H. Mirhendi, “Disseminated, fatal Trichosporon asahii infection in a bone marrow transplant recipient,” Journal of Microbiology, Immunology and Infection, vol. 39, no. 5, pp. 426–429, 2006. View at Google Scholar · View at Scopus
  9. M. S. Biasoli, D. Carlson, G. J. Chiganer et al., “Systemic infection caused by Trichosporon asahii in a patient with liver transplant,” Medical Mycology, vol. 46, no. 7, pp. 719–723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. L. Colombo, A. C. B. Padovan, and G. M. Chaves, “Current knowledge of Trichosporon spp. and trichosporonosis,” Clinical Microbiology Reviews, vol. 24, no. 4, pp. 682–700, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Miceli, J. A. Díaz, and S. A. Lee, “Emerging opportunistic yeast infections,” The Lancet Infectious Diseases, vol. 11, no. 2, pp. 142–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Vázquez-González, A. M. Perusquía-Ortiz, M. Hundeiker, and A. Bonifaz, “Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis,” Journal der Deutschen Dermatologischen Gesellschaft, vol. 11, no. 5, pp. 381–395, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Ribes, C. L. Vanover-Sams, and D. J. Baker, “Zygomycetes in human disease,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 236–301, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Pfaller, D. J. Diekema, D. L. Gibbs et al., “Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing,” Journal of Clinical Microbiology, vol. 45, no. 6, pp. 1735–1745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. J. Bajwa and A. Kulshrestha, “Fungal infections in intensive care unit: challenges in diagnosis and management,” Annals of Medical and Health Sciences Research, vol. 3, no. 2, pp. 238–244, 2013. View at Publisher · View at Google Scholar
  16. M. C. Arendrup, T. Boekhout, M. Akova et al., “ESCMID and ECMM joint clinical gui delines for the diagnosis and management of rare invasive yeast infections,” Clinical Microbiology and Infection, vol. 20, supplement 3, pp. 76–98, 2014. View at Google Scholar
  17. J. O. Silva, S. A. Franceschini, M. A. S. Lavrador, and R. C. Candido, “Performance of selective and differential media in the primary isolation of yeasts from different biological samples,” Mycopathologia, vol. 157, no. 1, pp. 29–36, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Hirschi, V. Letscher-Bru, J. Pottecher et al., “Disseminated Trichosporon mycotoxinivorans, Aspergillus fumigatus, and Scedosporium apiospermum coinfection after lung and liver transplantation in a cystic fibrosis patient,” Journal of Clinical Microbiology, vol. 50, no. 12, pp. 4168–4170, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sano, M. Sugitani, T. Ishige et al., “Supplemental utility of nested PCR for the pathological diagnosis of disseminated trichosporonosis,” Virchows Archiv, vol. 451, no. 5, pp. 929–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Xiao, L.-N. Guo, F. Kong et al., “Practical identification of eight medically important Trichosporon species by reverse line blot hybridization (RLB) assay and rolling circle amplification (RCA),” Medical Mycology, vol. 51, no. 3, pp. 300–308, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Notomi, H. Okayama, H. Masubuchi et al., “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Research, vol. 28, no. 12, article E63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Zhang, J. Zhu, H. Ren et al., “Rapid visual detection of highly pathogenic Streptococcus suis serotype 2 isolates by use of loop-mediated isothermal amplification,” Journal of Clinical Microbiology, vol. 51, no. 10, pp. 3250–3256, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Zhang, J. Zhu, Y. Feng et al., “Rapid and sensitive detection of H7N9 avian influenza virus by use of reverse transcription-loop-mediated isothermal amplification,” Journal of Clinical Microbiology, vol. 51, no. 11, pp. 3760–3764, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Niessen and R. F. Vogel, “Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay,” International Journal of Food Microbiology, vol. 140, no. 2-3, pp. 183–191, 2010. View at Publisher · View at Google Scholar · View at Scopus