Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 737621, 9 pages
http://dx.doi.org/10.1155/2015/737621
Review Article

Helicobacter pylori-Induced Signaling Pathways Contribute to Intestinal Metaplasia and Gastric Carcinogenesis

Department of Gastroenterology, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan

Received 22 January 2015; Accepted 20 April 2015

Academic Editor: Yukihiro Nakanishi

Copyright © 2015 Soichiro Sue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, I. Soerjomataram, R. Dikshit et al., “Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012,” International Journal of Cancer, vol. 136, no. 5, pp. E359–E386, 2015. View at Publisher · View at Google Scholar
  2. N. Uemura, S. Okamoto, S. Yamamoto et al., “Helicobacter pylori infection and the development of gastric cancer,” The New England Journal of Medicine, vol. 345, no. 11, pp. 784–789, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Sipponen and B. J. Marshall, “Gastritis and gastric cancer: Western countries,” Gastroenterology Clinics of North America, vol. 29, no. 3, pp. 579–592, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. The Cancer Genome Atlas Research Network, “Comprehensive molecular characterization of gastric adenocarcinoma,” Nature, vol. 513, no. 7517, pp. 202–209, 2014. View at Google Scholar
  5. R. Barros, J.-N. Freund, L. David, and R. Almeida, “Gastric intestinal metaplasia revisited: function and regulation of CDX2,” Trends in Molecular Medicine, vol. 18, no. 9, pp. 555–563, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Reis, L. David, P. Correa et al., “Intestinal metaplasia of human stomach displays distinct patterns of mucin (MUC1, MUC2, MUC5AC, and MUC6) expression,” Cancer Research, vol. 59, no. 5, pp. 1003–1007, 1999. View at Google Scholar · View at Scopus
  7. T. Niwa, Y. Ikehara, H. Nakanishi et al., “Mixed gastric- and intestinal-type metaplasia is formed by cells with dual intestinal and gastric differentiation,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 1, pp. 75–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Mutoh, S. Sakurai, K. Satoh et al., “Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice,” Gut, vol. 53, no. 10, pp. 1416–1423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Fujii, K. Yoshihashi, H. Suzuki et al., “CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 50, pp. 20584–20589, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Mutoh, H. Hayakawa, M. Sashikawa, H. Sakamoto, and K. Sugano, “Direct repression of Sonic Hedgehog expression in the stomach by Cdx2 leads to intestinal transformation,” Biochemical Journal, vol. 427, no. 3, pp. 423–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Shiotani, H. Iishi, N. Uedo et al., “Evidence that loss of sonic hedgehog is an indicator of Helicobater pylori-induced atrophic gastritis progressing to gastric cancer,” American Journal of Gastroenterology, vol. 100, no. 3, pp. 581–587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Lickert, C. Domon, G. Huls et al., “Wnt/β-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine,” Development, vol. 127, no. 17, pp. 3805–3813, 2000. View at Google Scholar · View at Scopus
  13. V. Camilo, R. Barros, S. Sousa et al., “Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells,” Carcinogenesis, vol. 33, no. 10, pp. 1985–1992, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Tsukamoto, K. Inada, H. Tanaka et al., “Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 3, pp. 135–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Bleuming, L. L. Kodach, M. J. Garcia Leon et al., “Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach,” Journal of Pathology, vol. 209, no. 2, pp. 190–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Mesquita, N. Jonckheere, R. Almeida et al., “Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines,” The Journal of Biological Chemistry, vol. 278, no. 51, pp. 51549–51556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Taylor, T. Levy, E. R. Suh, and P. G. Traber, “Activation of enhancer elements by the homeobox gene Cdx2 is cell line specific,” Nucleic Acids Research, vol. 25, no. 12, pp. 2293–2300, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. G. César, A. A. Borim, A. Caetano, P. M. Cury, and A. E. Silva, “Aneuploidies, deletion, and overexpression of TP53 gene in intestinal metaplasia of patients without gastric cancer,” Cancer Genetics and Cytogenetics, vol. 153, no. 2, pp. 127–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. Y.-H. Shiao, M. Rugge, P. Correa, H. P. Lehmann, and W. D. Scheer, “p53 Alteration in gastric precancerous lesions,” American Journal of Pathology, vol. 144, no. 3, pp. 511–517, 1994. View at Google Scholar · View at Scopus
  20. A. Ochiai, Y. Yamauchi, and S. Hirohashi, “p53 mutations in the non-neoplastic mucosa of the human stomach showing intestinal metaplasia,” International Journal of Cancer, vol. 69, no. 1, pp. 28–33, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Gomyo, M. Osaki, N. Kaibara, and H. Ito, “Numerical aberration and point mutation of p53 gene in human gastric intestinal metaplasia and well-differentiated adenocarcinoma: analysis by fluorescence in situ hybridization (FISH) and PCR-SSCP,” International Journal of Cancer, vol. 66, no. 5, pp. 594–599, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Morgan, G. J. S. Jenkins, T. Ashton et al., “Detection of p53 mutations in precancerous gastric tissue,” British Journal of Cancer, vol. 89, no. 7, pp. 1314–1319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kobayashi, T. Okamoto, S. Takayama, M. Akiyama, T. Ohno, and H. Yamada, “Genetic instability in intestinal metaplasia is a frequent event leading to well-differentiated early adenocarcinoma of the stomach,” European Journal of Cancer, vol. 36, no. 9, pp. 1113–1119, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. X.-L. Ling, D.-C. Fang, R.-Q. Wang, S.-M. Yang, and L. Fang, “Mitochondrial microsatellite instability in gastric cancer and its precancerous lesions,” World Journal of Gastroenterology, vol. 10, no. 6, pp. 800–803, 2004. View at Google Scholar · View at Scopus
  25. T. Hamamoto, H. Yokozaki, S. Semba et al., “Altered microsatellites in incomplete-type intestinal metaplasia adjacent to primary gastric cancers,” Journal of Clinical Pathology, vol. 50, no. 10, pp. 841–846, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Hinoi, P. C. Lucas, R. Kuick, S. Hanash, K. R. Cho, and E. R. Fearon, “CDX2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia,” Gastroenterology, vol. 123, no. 5, pp. 1565–1577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. B. F. Hinnebusch, A. Siddique, J. W. Henderson et al., “Enterocyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Krüppel-like factor,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 286, no. 1, pp. G23–G30, 2004. View at Google Scholar · View at Scopus
  28. D. Taupin, J. Pedersen, M. Familari, G. Cook, N. Yeomans, and A. S. Giraud, “Augmented intestinal trefoil factor (TFF3) and loss of pS2 (TFF1) expression precedes metaplastic differentiation of gastric epithelium,” Laboratory Investigation, vol. 81, no. 3, pp. 397–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Zweibaum, N. Triadou, M. Kedinger et al., “Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon,” International Journal of Cancer, vol. 32, no. 4, pp. 407–412, 1983. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Shiroshita, H. Watanabe, Y. Ajioka, G. Watanabe, K. Nishikura, and S. Kitano, “Re-evaluation of mucin phenotypes of gastric minute well-differentiated-type adenocarcinomas using a series of HGM, MUC5AC, MUC6, M-GGMC, MUC2 and CD10 stains,” Pathology International, vol. 54, no. 5, pp. 311–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Tatematsu, T. Tsukamoto, and K. Inada, “Stem cells and gastric cancer: role of gastric and intestinal mixed intestinal metaplasia,” Cancer Science, vol. 94, no. 2, pp. 135–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Yamamoto, Y.-Q. Bai, and Y. Yuasa, “Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression,” Biochemical and Biophysical Research Communications, vol. 300, no. 4, pp. 813–818, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Faller and T. Kirchner, “Immunological and morphogenic basis of gastric mucosa atrophy and metaplasia,” Virchows Archiv, vol. 446, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Q.-L. Li, K. Ito, C. Sakakura et al., “Causal relationship between the loss of RUNX3 expression and gastric cancer,” Cell, vol. 109, no. 1, pp. 113–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Tsukamoto, T. Mizoshita, and M. Tatematsu, “Gastric-and-intestinal mixed-type intestinal metaplasia: aberrant expression of transcription factors and stem cell intestinalization,” Gastric Cancer, vol. 9, no. 3, pp. 156–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ohnishi, N. Ma, R. Thanan et al., “DNA damage in inflammation-related carcinogenesis and cancer stem cells,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 387014, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Matsumoto, H. Marusawa, K. Kinoshita et al., “Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium,” Nature Medicine, vol. 13, no. 4, pp. 470–476, 2007. View at Publisher · View at Google Scholar
  38. A. Yamane, W. Resch, N. Kuo et al., “Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes,” Nature Immunology, vol. 12, no. 1, pp. 62–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Honjo, K. Kinoshita, and M. Muramatsu, “Molecular mechanism of class switch recombination: linkage with somatic hypermutation,” Annual Review of Immunology, vol. 20, pp. 165–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Matsumoto, H. Marusawa, Y. Endo, Y. Ueda, Y. Matsumoto, and T. Chiba, “Expression of APOBEC2 is transcriptionally regulated by NF-κB in human hepatocytes,” FEBS Letters, vol. 580, no. 3, pp. 731–735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Maekita, K. Nakazawa, M. Mihara et al., “High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk,” Clinical Cancer Research, vol. 12, no. 3, part 1, pp. 989–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Nakajima, S. Yamashita, T. Maekita, T. Niwa, K. Nakazawa, and T. Ushijima, “The presence of a methylation fingerprint of Helicobacter pylori infection in human gastric mucosae,” International Journal of Cancer, vol. 124, no. 4, pp. 905–910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Niwa, T. Tsukamoto, T. Toyoda et al., “Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells,” Cancer Research, vol. 70, no. 4, pp. 1430–1440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. W. K. Leung, E. P. S. Man, J. Yu et al., “Effects of Helicobacter pylori eradication on methylation status of E-cadherin gene in noncancerous stomach,” Clinical Cancer Research, vol. 12, no. 10, pp. 3216–3221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Perri, R. Cotugno, A. Piepoli et al., “Aberrant DNA methylation in non-neoplastic gastric mucosa of H. pylori infected patients and effect of eradication,” American Journal of Gastroenterology, vol. 102, no. 7, pp. 1361–1371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Hur, T. Niwa, T. Toyoda et al., “Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation,” Carcinogenesis, vol. 32, no. 1, pp. 35–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Nakajima, S. Enomoto, S. Yamashita et al., “Persistence of a component of DNA methylation in gastric mucosae after Helicobacter pylori eradication,” Journal of Gastroenterology, vol. 45, no. 1, pp. 37–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S.-Y. Park, E. J. Yoo, N.-Y. Cho, N. Kim, and G. H. Kang, “Comparison of CpG island hypermethylation and repetitive DNA hypomethylation in premalignant stages of gastric cancer, stratified for Helicobacter pylori infection,” Journal of Pathology, vol. 219, no. 4, pp. 410–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Zong and Y. Seto, “CpG island methylator phenotype, Helicobacter pylori, Epstein-Barr virus, and microsatellite instability and prognosis in gastric cancer: a systematic review and meta-analysis,” PLoS ONE, vol. 9, no. 1, Article ID e86097, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. B. L. Lee, H. S. Lee, J. Jung et al., “Nuclear factor-kappaB activation correlates with better prognosis and Akt activation in human gastric cancer,” Clinical Cancer Research, vol. 11, no. 7, pp. 2518–2525, 2005. View at Google Scholar
  51. J. F. Tomb, O. White, A. R. Kerlavage et al., “The complete genome sequence of the gastric pathogen Helicobacter pylori,” Nature, vol. 388, no. 6642, pp. 539–547, 1997. View at Google Scholar
  52. A. Covacci, J. L. Telford, G. Del Giudice, J. Parsonnet, and R. Rappuoli, “Helicobacter pylori virulence and genetic geography,” Science, vol. 284, no. 5418, pp. 1328–1333, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Odenbreit, J. Püls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas, “Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion,” Science, vol. 287, no. 5457, pp. 1497–1500, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Viala, C. Chaput, I. G. Boneca et al., “Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island,” Nature Immunology, vol. 5, no. 11, pp. 1166–1174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Hirata, T. Ohmae, W. Shibata et al., “MyD88 and TNF receptor-associated factor 6 are critical signal transducers in Helicobacter pylori-infected human epithelial cells,” Journal of Immunology, vol. 176, no. 6, pp. 3796–3803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Maeda, H. Yoshida, K. Ogura et al., “H. pylori activates NF-κB through a signaling pathway involving IκB kinases, NF-κB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells,” Gastroenterology, vol. 119, no. 1, pp. 97–108, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Lamb and L.-F. Chen, “Role of the Helicobacter pylori-Induced inflammatory response in the development of gastric cancer,” Journal of Cellular Biochemistry, vol. 114, no. 3, pp. 491–497, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Lamb and L.-F. Chen, “The many roads traveled by Helicobacter pylori to NFκB activation,” Gut Microbes, vol. 1, no. 2, pp. 109–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Shibata, Y. Hirata, S. Maeda et al., “CagA protein secreted by the intact type IV secretion system leads to gastric epithelial inflammation in the Mongolian gerbil model,” Journal of Pathology, vol. 210, no. 3, pp. 306–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Rieder, J. L. Merchant, and R. Haas, “Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in mongolian gerbils,” Gastroenterology, vol. 128, no. 5, pp. 1229–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Brandt, T. Kwok, R. Hartig, W. König, and S. Backert, “NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9300–9305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. L. A. Noach, N. B. Bosma, J. Jansen, F. J. Hoek, S. J. H. van Deventer, and G. N. J. Tytgat, “Mucosal tumor necrosis factor-α interleukin-1β, and interleukin-8 production in patients with Helicobacter pylori infection,” Scandinavian Journal of Gastroenterology, vol. 29, no. 5, pp. 425–429, 1994. View at Publisher · View at Google Scholar · View at Scopus
  63. X.-G. Fan, A. Chua, X.-J. Fan, and P. W. N. Keeling, “Increased gastric production of interleukin-8 and tumour necrosis factor in patients with Helicobacter pylori infection,” Journal of Clinical Pathology, vol. 48, no. 2, pp. 133–136, 1995. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Basso, M. Scrigner, A. Toma et al., “Helicobacter pylori infection enhances mucosal interleukin-1 beta, interleukin-6, and the soluble receptor of interleukin-2,” International Journal of Clinical and Laboratory Research, vol. 26, no. 3, pp. 207–210, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Yamaoka, M. Kita, T. Kodama, N. Sawai, K. Kashima, and J. Imanishi, “Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains,” Gut, vol. 41, no. 4, pp. 442–451, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Maeda and M. Omata, “Inflammation and cancer: role of nuclear factor-kappaB activation,” Cancer Science, vol. 99, no. 5, pp. 836–842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Yanai, S. Maeda, W. Shibata et al., “Activation of IκB kinase β and NF-κB is essential for Helicobacter pylori-induced chronic gastritis in Mongolian gerbils,” Infection and Immunity, vol. 76, no. 2, pp. 781–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Kinoshita, Y. Hirata, H. Nakagawa et al., “Interleukin-6 mediates epithelial-stromal interactions and promotes gastric tumorigenesis,” PLoS ONE, vol. 8, no. 4, Article ID e60914, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. N. C. Tebbutt, A. S. Giraud, M. Inglese et al., “Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice,” Nature Medicine, vol. 8, no. 10, pp. 1089–1097, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Howlett, T. R. Menheniott, L. M. Judd, and A. S. Giraud, “Cytokine signalling via gp130 in gastric cancer,” Biochimica et Biophysica Acta, vol. 1793, no. 11, pp. 1623–1633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Kanda, H. Seno, Y. Konda et al., “STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells,” Oncogene, vol. 23, no. 28, pp. 4921–4929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. I. O. Lee, J. H. Kim, Y. J. Choi et al., “Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells,” The Journal of Biological Chemistry, vol. 285, no. 21, pp. 16042–16050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. T. C. Wang and J. R. Goldenring, “Inflammation intersection: gp130 balances gut irritation and stomach cancer,” Nature Medicine, vol. 8, no. 10, pp. 1080–1082, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Ernst, M. Najdovska, D. Grail et al., “STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1727–1738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Saadat, H. Higashi, C. Obuse et al., “Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity,” Nature, vol. 447, no. 7142, pp. 330–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Saito, N. Murata-Kamiya, T. Hirayama, Y. Ohba, and M. Hatakeyama, “Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21,” Journal of Experimental Medicine, vol. 207, no. 10, pp. 2157–2174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Kawai and S. Akira, “The role of pattern-recognition receptors in innate immunity: update on toll-like receptors,” Nature Immunology, vol. 11, no. 5, pp. 373–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Bollrath and F. R. Greten, “IKK/NF‐κB and STAT3 pathways: central signalling hubs in inflammationmediated tumour promotion and metastasis,” The EMBO Reports, vol. 10, no. 12, pp. 1314–1319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Shaykhiev, J. Behr, and R. Bals, “Microbial patterns signaling via toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival,” PLoS ONE, vol. 3, no. 1, Article ID e1393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. X. Z. West, N. L. Malinin, A. A. Merkulova et al., “Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands,” Nature, vol. 467, no. 7318, pp. 972–976, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Uno, K. Kato, T. Atsumi et al., “Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 293, no. 5, pp. G1004–G1012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. G. L. Hold, C. S. Rabkin, W.-H. Chow et al., “A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors,” Gastroenterology, vol. 132, no. 3, pp. 905–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Tye, C. L. Kennedy, M. Najdovska et al., “STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation,” Cancer Cell, vol. 22, no. 4, pp. 466–478, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Hayakawa, Y. Hirata, H. Kinoshita et al., “Differential roles of ASK1 and TAK1 in Helicobacter pylori-induced cellular responses,” Infection and Immunity, vol. 81, no. 12, pp. 4551–4560, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. W. Shibata, S. Maeda, Y. Hikiba et al., “c-Jun NH2-terminal kinase 1 is a critical regulator for the development of gastric cancer in mice,” Cancer Research, vol. 68, no. 13, pp. 5031–5039, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Hayakawa, Y. Hirata, H. Nakagawa et al., “Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 2, pp. 780–785, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. N. R. Salama, M. L. Hartung, and A. Müller, “Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori,” Nature Reviews Microbiology, vol. 11, no. 6, pp. 385–399, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. H. F. Ismail, P. Fick, J. Zhang, R. G. Lynch, and D. J. Berg, “Depletion of neutrophils in IL-10-/- mice delays clearance of gastric Helicobacter infection and decreases the Th1 immune response to Helicobacter,” Journal of Immunology, vol. 170, no. 7, pp. 3782–3789, 2003. View at Publisher · View at Google Scholar · View at Scopus