Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 745410, 11 pages
http://dx.doi.org/10.1155/2015/745410
Research Article

Neck Circumference as a Predictive Indicator of CKD for High Cardiovascular Risk Patients

1Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Minquan East Road, Neihu District, Taipei City 114, Taiwan
2Department of Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wenchang Road, Shilin District, Taipei City 111, Taiwan
3Division of Cardiology, Chiayi Chang Gung Memorial Hospital, No. 6, West Section Chiapu Road, Putzu City, Chiayi Hsien 613, Taiwan
4Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei City 114, Taiwan
5Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
6School of Nursing, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
7Department of Biomedical Engineering, National Defense Medical Center, No. 161, Section 6, Minquan East Road, Neihu District, Taipei City 114, Taiwan
8Section of Biostatistics and Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Room 4317, No. 161, Section 6, Minquan East Road, Neihu District, Taipei City 114, Taiwan

Received 15 July 2014; Revised 2 December 2014; Accepted 5 January 2015

Academic Editor: Jamal H. Hashim

Copyright © 2015 Ya-Fang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. L. Schiffrin, M. L. Lipman, and J. F. E. Mann, “Chronic kidney disease: effects on the cardiovascular system,” Circulation, vol. 116, no. 1, pp. 85–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C.-H. Bai, “Incidence of hypertension, hyperglycemia and hyperlipidemia: the results from national survey,” in Proceedings of the 41st Asia Pacific Consortium for Public Health Conference, NTUH International Convention Center, Taipei, Taiwan, 2009.
  3. M. A. S. Cabrera, S. M. de Andrade, and A. E. Mesas, “A prospective study of risk factors for cardiovascular events among the elderly,” Clinical Interventions in Aging, vol. 7, pp. 463–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. McCullough, S. Steigerwalt, K. Tolia et al., “Cardiovascular disease in chronic kidney disease: data from the kidney early evaluation program (KEEP),” Current Diabetes Reports, vol. 11, no. 1, pp. 47–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. W. Taal and B. M. Brenner, “Predicting initiation and progression of chronic kidney disease: developing renal risk scores,” Kidney International, vol. 70, no. 10, pp. 1694–1705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B. F. Culleton, M. G. Larson, P. W. F. Wilson, J. C. Evans, P. S. Parfrey, and D. Levy, “Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency,” Kidney International, vol. 56, no. 6, pp. 2214–2219, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C.-Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. McCullough, S. Li, C. T. Jurkovitz et al., “CKD and cardiovascular disease in screened high-risk volunteer and general populations: the Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004,” The American Journal of Kidney Diseases, vol. 51, no. 4, supplement 2, pp. S38–S45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Olechnowicz-Tietz, A. Gluba, A. Paradowska, M. Banach, and J. Rysz, “The risk of atherosclerosis in patients with chronic kidney disease,” International Urology and Nephrology, vol. 45, no. 6, pp. 1605–1612, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Sarnak, A. S. Levey, A. C. Schoolwerth et al., “Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention,” Circulation, vol. 108, no. 17, pp. 2154–2169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. T. Gansevoort, R. Correa-Rotter, B. R. Hemmelgarn et al., “Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention,” The Lancet, vol. 382, no. 9889, pp. 339–352, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. W. Yerkey, S. J. Kernis, B. A. Franklin, K. R. Sandberg, and P. A. McCullough, “Renal dysfunction and acceleration of coronary disease,” Heart, vol. 90, no. 8, pp. 961–966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Klop, J. W. F. Elte, and M. C. Cabezas, “Dyslipidemia in obesity: mechanisms and potential targets,” Nutrients, vol. 5, no. 4, pp. 1218–1240, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M.-A. Cornier, J.-P. Després, N. Davis et al., “Assessing adiposity: a scientific statement from the american heart association,” Circulation, vol. 124, no. 18, pp. 1996–2019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Vague, “The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease,” The American Journal of Clinical Nutrition, vol. 4, no. 1, pp. 20–34, 1956. View at Google Scholar · View at Scopus
  16. S. R. Preis, J. M. Massaro, U. Hoffmann et al., “Neck circumference as a novel measure of cardiometabolic risk: the framingham heart study,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 8, pp. 3701–3710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Stabe, A. C. J. Vasques, M. M. O. Lima et al., “Neck circumference as a simple tool for identifying the metabolic syndrome and insulin resistance: results from the Brazilian Metabolic Syndrome Study,” Clinical Endocrinology, vol. 78, no. 6, pp. 874–881, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Androutsos, E. Grammatikaki, G. Moschonis et al., “Neck circumference: a useful screening tool of cardiovascular risk in children,” Pediatric Obesity, vol. 7, no. 3, pp. 187–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Ben-Noun and A. Laor, “Relationship of neck circumference to cardiovascular risk factors,” Obesity Research, vol. 11, no. 2, pp. 226–231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Ben-Noun, E. Sohar, and A. Laor, “Neck circumference as a simple screening measure for identifying overweight and obese patients,” Obesity Research, vol. 9, no. 8, pp. 470–477, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. L. L. Ben-Noun and A. Laor, “Relationship between changes in neck circumference and cardiovascular risk factors,” Experimental and Clinical Cardiology, vol. 11, no. 1, pp. 14–20, 2006. View at Google Scholar · View at Scopus
  22. S. Hoebel, L. Malan, and J. H. de Ridder, “Determining cut-off values for neck circumference as a measure of the metabolic syndrome amongst a South African cohort: the SABPA study,” Endocrine, vol. 42, no. 2, pp. 335–342, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Kurtoglu, N. Hatipoglu, M. M. Mazicioglu, and M. Kondolot, “Neck circumference as a novel parameter to determine metabolic risk factors in obese children,” European Journal of Clinical Investigation, vol. 42, no. 6, pp. 623–630, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Laakso, V. Matilainen, and S. Keinänen-Kiukaanniemi, “Association of neck circumference with insulin resistance-related factors,” International Journal of Obesity, vol. 26, no. 6, pp. 873–875, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. M. Medeiros, V. M. S. de Bruin, C. de Castro-Silva, S. M. H. A. Araújo, C. M. Chaves Junior, and P. F. C. de Bruin, “Neck circumference, a bedside clinical feature related to mortality of acute ischemic stroke,” Revista da Associacao Medica Brasileira, vol. 57, no. 5, pp. 559–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. R. Preis, M. J. Pencina, R. B. D'Agostino Sr., J. B. Meigs, R. S. Vasan, and C. S. Fox, “Neck circumference and the development of cardiovascular disease risk factors in the Framingham Heart Study,” Diabetes Care, vol. 36, no. 1, article e3, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. K. J. Rosenquist, J. M. Massaro, K. M. Pencina et al., “Neck circumference, carotid wall intima-media thickness, and incident stroke,” Diabetes Care, vol. 36, no. 9, pp. e153–e154, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. N. G. Vallianou, A. A. Evangelopoulos, V. Bountziouka et al., “Neck circumference is correlated with triglycerides and inversely related with HDL cholesterol beyond BMI and waist circumference,” Diabetes Metabolism Research and Reviews, vol. 29, no. 1, pp. 90–97, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Y. Zhou, H. Ge, M. F. Zhu et al., “Neck circumference as an independent predictive contributor to cardio-metabolic syndrome,” Cardiovascular Diabetology, vol. 12, no. 1, article 76, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. D. T. Chan, G. F. Watts, A. B. Irish, E. M. M. Ooi, and G. K. Dogra, “Insulin resistance and the metabolic syndrome are associated with arterial stiffness in patients with chronic kidney disease,” American Journal of Hypertension, vol. 26, no. 9, pp. 1155–1161, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Zhe, Y. Bai, Y. Cheng et al., “Hypertriglyceridemic waist is associated with increased carotid atherosclerosis in chronic kidney disease patients,” Nephron Clinical Practice, vol. 122, no. 3-4, pp. 146–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Lassale, P. Galan, C. Julia, L. Fezeu, S. Hercberg, and E. Kesse-Guyot, “Association between adherence to nutritional guidelines, the metabolic syndrome and adiposity markers in a french adult general population,” PLoS ONE, vol. 8, no. 10, Article ID e76349, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. B. J. Arsenault, I. Lemieux, J.-P. Després et al., “The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk prospective population study,” Canadian Medical Association Journal, vol. 182, no. 13, pp. 1427–1432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Murakami, R. Hikima, S. Arai, K. Yamazaki, S. Iizuka, and Y. Tochihara, “Short term longitudinal changes in subcutaneous fat distribution and body size among Japanese women in the third decade of life,” Journal of Physiological Anthropology and Applied Human Science, vol. 18, no. 4, pp. 141–149, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. D. S. Freedman and A. A. Rimm, “The relation of body fat distribution, as assessed by six girth measurements, to diabetes mellitus in women,” The American Journal of Public Health, vol. 79, no. 6, pp. 715–720, 1989. View at Publisher · View at Google Scholar · View at Scopus
  36. C. S. Fox, J. M. Massaro, U. Hoffmann et al., “Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study,” Circulation, vol. 116, no. 1, pp. 39–48, 2007. View at Publisher · View at Google Scholar · View at Scopus