Table of Contents Author Guidelines Submit a Manuscript

An erratum for this article has been published. To view the erratum, please click here.

BioMed Research International
Volume 2015, Article ID 758616, 10 pages
Research Article

Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice

1The Third Affiliated Hospital of Southern Medical University, Guangzhou 510500, China
2Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
3Shenzhen Key Laboratory for Molecular Imaging, Shenzhen 518055, China
4Department of Physics, University of Vermont, Burlington, VT 05405, USA

Received 24 March 2015; Revised 23 June 2015; Accepted 25 June 2015

Academic Editor: Kazuma Ogawa

Copyright © 2015 Fei Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The goal of this study is to investigate the feasibility of using CD81- (Cluster of Differentiation 81 protein-) targeted microparticles of iron oxide (CD81-MPIO) for magnetic resonance imaging (MRI) of the murine atherosclerosis. CD81-MPIO and IgG- (Immunoglobulin G-) MPIO were prepared by covalently conjugating, respectively, with anti-CD81 monoclonal and IgG antibodies to the surface of the tosyl activated MPIO. The relevant binding capability of the MPIO was examined by incubating them with murine bEnd.3 cells stimulated with phenazine methosulfate (PMS) and its effect in shortening T2 relaxation time was also examined. MRI in apolipoprotein E-deficient mice was studied in vivo. Our results show that CD81-MPIO, but not IgG-MPIO, can bind to the PMS-stimulated bEnd.3 cells. The T2 relaxation time was significantly shortened for stimulated bEnd.3 cells when compared with IgG-MPIO. In vivo MRI in apolipoprotein E-deficient mice showed highly conspicuous areas of low signal after CD81-MPIO injection. Quantitative analysis of the area of CD81-MPIO contrast effects showed 8.96- and 6.98-fold increase in comparison with IgG-MPIO or plain MPIO, respectively (). Histological assay confirmed the expression of CD81 and CD81-MPIO binding onto atherosclerotic lesions. In conclusion, CD81-MPIO allows molecular assessment of murine atherosclerotic lesions by magnetic resonance imaging.