Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 789315, 5 pages
http://dx.doi.org/10.1155/2015/789315
Research Article

Metabolic Engineering of Escherichia coli for Poly(3-hydroxybutyrate) Production under Microaerobic Condition

1Department of Basic Medicine, Medical College of Qinghai University, Xining 810016, China
2Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
3College of Eco-Environmental Engineering of Qinghai University, Xining 810016, China

Received 2 January 2015; Revised 24 March 2015; Accepted 26 March 2015

Academic Editor: Yun-Peng Chao

Copyright © 2015 Xiao-Xing Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G.-Q. Chen and M. K. Patel, “Plastics derived from biological sources: present and future. A technical and environmental review,” Chemical Reviews, vol. 112, no. 4, pp. 2082–2099, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Philip, T. Keshavarz, and I. Roy, “Polyhydroxyalkanoates: biodegradable polymers with a range of applications,” Journal of Chemical Technology and Biotechnology, vol. 82, no. 3, pp. 233–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G.-Q. Chen, “A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry,” Chemical Society Reviews, vol. 38, no. 8, pp. 2434–2446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Obruca, P. Benesova, J. Oborna, and I. Marova, “Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator,” Biotechnology Letters, vol. 36, no. 4, pp. 775–781, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. J. G. da Cruz Pradella, J. L. Ienczak, C. R. Delgado, and M. K. Taciro, “Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator,” Biotechnology Letters, vol. 34, no. 6, pp. 1003–1007, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. T. Cesário, R. S. Raposo, M. C. M. D. de Almeida, F. van Keulen, B. S. Ferreira, and M. M. R. da Fonseca, “Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates,” New Biotechnology, vol. 31, no. 1, pp. 104–113, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Pleissner, W. C. Lam, W. Han et al., “Fermentative polyhydroxybutyrate production from a novel feedstock derived from bakery waste,” BioMed Research International, vol. 2014, Article ID 819474, 8 pages, 2014. View at Publisher · View at Google Scholar
  8. P. I. Nikel, M. J. Pettinari, M. A. Galvagno, and B. S. Méndez, “Poly(3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis,” Applied and Environmental Microbiology, vol. 72, no. 4, pp. 2614–2620, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. I. Nikel, M. J. Pettinari, M. A. Galvagno, and B. S. Méndez, “Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures,” Applied Microbiology and Biotechnology, vol. 77, no. 6, pp. 1337–1343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. X.-X. Wei, Z.-Y. Shi, M.-Q. Yuan, and G.-Q. Chen, “Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli,” Applied Microbiology and Biotechnology, vol. 82, no. 4, pp. 703–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Jian, S.-Q. Zhang, Z.-Y. Shi, W. Wang, G.-Q. Chen, and Q. Wu, “Production of polyhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways,” Applied Microbiology and Biotechnology, vol. 87, no. 6, pp. 2247–2256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Beyer, C. Doberenz, D. Falke, D. Hunger, B. Suppmann, and R. G. Sawers, “Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products,” Journal of Bacteriology, vol. 195, no. 7, pp. 1428–1435, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Sekar and K. E. Tyo, “Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis,” Metabolic Engineering, vol. 28, pp. 180–189, 2015. View at Publisher · View at Google Scholar