Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 821823, 10 pages
http://dx.doi.org/10.1155/2015/821823
Review Article

Utility of Circulating MicroRNAs as Clinical Biomarkers for Cardiovascular Diseases

1Ophthalmic Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
2Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
3Department of Ophthalmology, College of Medicine, University of Florida, Jacksonville, FL 32209, USA

Received 14 September 2014; Accepted 26 November 2014

Academic Editor: Xia Li

Copyright © 2015 Altaf A. Kondkar and Khaled K. Abu-Amero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Rosamond, K. Flegal, K. Furie et al., “Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, vol. 117, no. 4, pp. e25–e146, 2008. View at Google Scholar
  2. D. Lloyd-Jones, R. J. Adams, and T. M. Brown, “Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association,” Circulation, vol. 121, no. 7, pp. 948–954, 2010. View at Google Scholar
  3. T. A. Pearson, G. A. Mensah, R. W. Alexander et al., “Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association,” Circulation, vol. 107, no. 3, pp. 499–511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Saenger and A. S. Jaffe, “Requiem for a heavyweight: the demise of creatine kinase-MB,” Circulation, vol. 118, no. 21, pp. 2200–2206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. V. C. Vasile, L. Babuin, E. Giannitsis, H. A. Katus, and A. S. Jaffe, “Relationship of MRI-determined infarct size and cTnI measurements in patients with ST-elevation myocardial infarction,” Clinical Chemistry, vol. 54, no. 3, pp. 617–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. B. Daniels, G. A. Laughlin, P. Clopton, A. S. Maisel, and E. Barrett-Connor, “Barrett-Connor, Minimally elevated cardiac troponin T and elevated N-terminal pro-B-type natriuretic peptide predict mortality in older adults: results from the Rancho Bernardo Study,” Journal of the American College of Cardiology, vol. 52, no. 6, pp. 450–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Sanchis, A. Bardají, X. Bosch et al., “Usefulness of high-sensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage,” American Heart Journal, vol. 164, no. 2, pp. 194.e1–200.e1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. F. van de Werf, J. Bax, A. Betriu et al., “Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology,” European Heart Journal, vol. 29, no. 23, pp. 2909–2945, 2008. View at Google Scholar
  9. L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. E. van Rooij, N. Liu, and E. N. Olson, “MicroRNAs flex their muscles,” Trends in Genetics, vol. 24, no. 4, pp. 159–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. P. Bartel and C.-Z. Chen, “Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs,” Nature Reviews Genetics, vol. 5, no. 5, pp. 396–400, 2004. View at Google Scholar · View at Scopus
  14. G. Stefani and F. J. Slack, “Small non-coding RNAs in animal development,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 219–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Krützfeldt, M. N. Poy, and M. Stoffel, “Strategies to determine the biological function of microRNAs,” Nature Genetics, vol. 38, no. 1, pp. S14–S19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kozomara and S. Griffiths-Jones, “MiRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, no. 1, pp. D152–D157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. C. Lee and V. Ambros, “An extensive class of small RNAs in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 862–864, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. A. Aravin, M. Lagos-Quintana, A. Yalcin et al., “The small RNA profile during Drosophila melanogaster development,” Developmental Cell, vol. 5, no. 2, pp. 337–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Han, Y. Lee, K.-H. Yeom, Y.-K. Kim, H. Jin, and V. N. Kim, “The Drosha-DGCR8 complex in primary microRNA processing,” Genes and Development, vol. 18, no. 24, pp. 3016–3027, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs,” Genes and Development, vol. 17, no. 24, pp. 3011–3016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. F. Ketting, “MicroRNA biogenesis and function: an overview,” Advances in Experimental Medicine and Biology, vol. 700, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. L. P. Lim, N. C. Lau, P. Garrett-Engele et al., “Microarray analysis shows that some microRNAs downregulate large numbers of-target mRNAs,” Nature, vol. 433, no. 7027, pp. 769–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Pillai, S. N. Bhattacharyya, C. G. Artus et al., “Molecular biology: inhibition of translational initiation by let-7 microRNA in human cells,” Science, vol. 309, no. 5740, pp. 1573–1576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Weber, D. H. Baxter, S. Zhang et al., “The microRNA spectrum in 12 body fluids,” Clinical Chemistry, vol. 56, no. 11, pp. 1733–1741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya, “Secretory mechanisms and intercellular transfer of microRNAs in living cells,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 17442–17452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Zernecke, K. Bidzhekov, H. Noels et al., “Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection,” Science Signaling, vol. 2, no. 100, p. ra81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. P. Hunter, N. Ismail, X. Zhang et al., “Detection of microRNA expression in human peripheral blood microvesicles,” PLoS ONE, vol. 3, no. 11, Article ID e3694, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zhang, D. Liu, X. Chen et al., “Secreted monocytic miR-150 enhances targeted endothelial cell migration,” Molecular Cell, vol. 39, no. 1, pp. 133–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Wang, S. Zhang, J. Weber, D. Baxter, and D. J. Galas, “Export of microRNAs and microRNA-protective protein by mammalian cells,” Nucleic Acids Research, vol. 38, no. 20, pp. 7248–7259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. D. Arroyo, J. R. Chevillet, E. M. Kroh et al., “Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 5003–5008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek, and A. T. Remaley, “MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins,” Nature Cell Biology, vol. 13, no. 4, pp. 423–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Turchinovich, T. R. Samatov, A. G. Tonevitsky, and B. Burwinkel, “Circulating miRNAs: cell-cell communication function?” Frontiers in Genetics, vol. 4, article 119, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Swarup and M. R. Rajeswari, “Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases,” FEBS Letters, vol. 581, no. 5, pp. 795–799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Zampetaki, P. Willeit, I. Drozdov, S. Kiechl, and M. Mayr, “Profiling of circulating microRNAs: from single biomarkers to re-wired networks,” Cardiovascular Research, vol. 93, no. 4, pp. 555–562, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M.-H. Mo, L. Chen, Y. Fu, W. Wang, and S. W. Fu, “Cell-free circulating miRNA biomarkers in cancer,” Journal of Cancer, vol. 3, no. 1, pp. 432–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Fichtlscherer, A. M. Zeiher, and S. Dimmeler, “Circulating microRNAs: biomarkers or mediators of cardiovascular diseases?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2383–2390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Zampetaki, S. Kiechl, I. Drozdov et al., “Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes,” Circulation Research, vol. 107, no. 6, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Li, J. Zhu, W. Zhang et al., “Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection,” Circulation, vol. 124, no. 2, pp. 175–184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. E. M. Small and E. N. Olson, “Pervasive roles of microRNAs in cardiovascular biology,” Nature, vol. 469, no. 7330, pp. 336–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Wang, X. Luo, Y. Lu, and B. Yang, “miRNAs at the heart of the matter,” Journal of Molecular Medicine, vol. 86, no. 7, pp. 771–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Bauersachs and T. Thum, “Biogenesis and regulation of cardiovascular MicroRNAs,” Circulation Research, vol. 109, no. 3, pp. 334–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Zhao, J. F. Ransom, A. Li et al., “Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2,” Cell, vol. 129, no. 2, pp. 303–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Yang, H. Lin, J. Xiao et al., “The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2,” Nature Medicine, vol. 13, no. 4, pp. 486–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. G.-K. Wang, J.-Q. Zhu, J.-T. Zhang et al., “Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans,” European Heart Journal, vol. 31, no. 6, pp. 659–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. D'Alessandra, P. Devanna, F. Limana et al., “Circulating microRNAs are new and sensitive biomarkers of myocardial infarction,” European Heart Journal, vol. 31, no. 22, pp. 2765–2773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Gidlöf, P. Andersson, J. van der Pals, M. Götberg, and D. Erlinge, “Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples,” Cardiology, vol. 118, no. 4, pp. 217–226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Cheng, N. Tan, J. Yang et al., “A translational study of circulating cell-free microRNA-1 in acute myocardial infarction,” Clinical Science, vol. 119, no. 2, pp. 87–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Ai, R. Zhang, Y. Li et al., “Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 73–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Han, J. Toli, and M. Abdellatif, “MicroRNAs in the cardiovascular system,” Current Opinion in Cardiology, vol. 26, no. 3, pp. 181–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Liu, S. Bezprozvannaya, A. H. Williams et al., “microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart,” Genes and Development, vol. 22, no. 23, pp. 3242–3254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Torella, C. Iaconetti, D. Catalucci et al., “MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo,” Circulation Research, vol. 109, no. 8, pp. 880–893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Bauters, R. Kumarswamy, A. Holzmann et al., “Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodeling after myocardial infarction,” International Journal of Cardiology, vol. 168, no. 3, pp. 1837–1840, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Wang, G. Long, C. Zhao et al., “Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis,” Journal of Translational Medicine, vol. 11, no. 1, article 222, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Kuwabara, K. Ono, T. Horie et al., “Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage,” Circulation: Cardiovascular Genetics, vol. 4, no. 4, pp. 446–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. E. van Rooij, L. B. Sutherland, X. Qi, J. A. Richardson, J. Hill, and E. N. Olson, “Control of stress-dependent cardiac growth and gene expression by a microRNA,” Science, vol. 316, no. 5824, pp. 575–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. T. E. Callis, K. Pandya, Y. S. Hee et al., “MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice,” Journal of Clinical Investigation, vol. 119, no. 9, pp. 2772–2786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Ji, R. Takahashi, Y. Hiura, G. Hirokawa, Y. Fukushima, and N. Iwai, “Plasma miR-208 as a biomarker of myocardial injury,” Clinical Chemistry, vol. 55, no. 11, pp. 1944–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. M. F. Corsten, R. Dennert, S. Jochems et al., “Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease,” Circulation: Cardiovascular Genetics, vol. 3, no. 6, pp. 499–506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Adachi, M. Nakanishi, Y. Otsuka et al., “Plasma microRNA 499 as a biomarker of acute myocardial infarction,” Clinical Chemistry, vol. 56, no. 7, pp. 1183–1185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Fichtlscherer, S. de Rosa, H. Fox et al., “Circulating microRNAs in patients with coronary artery disease,” Circulation Research, vol. 107, no. 5, pp. 677–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J.-X. Wang, J.-Q. Jiao, Q. Li et al., “miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1,” Nature Medicine, vol. 17, no. 1, pp. 71–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Meder, A. Keller, B. Vogel et al., “MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction,” Basic Research in Cardiology, vol. 106, no. 1, pp. 13–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Widera, S. K. Gupta, J. M. Lorenzen et al., “Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 5, pp. 872–875, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Devaux, M. Vausort, E. Goretti et al., “Use of circulating microRNAs to diagnose acute myocardial infarction,” Clinical Chemistry, vol. 58, no. 3, pp. 559–567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Olivieri, R. Antonicelli, M. Lorenzi et al., “Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction,” International Journal of Cardiology, vol. 167, no. 2, pp. 531–536, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Thum, C. Gross, J. Fiedler et al., “MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts,” Nature, vol. 456, no. 7224, pp. 980–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Van Rooij, L. B. Sutherland, N. Liu et al., “A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 48, pp. 18255–18260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Fukushima, M. Nakanishi, H. Nonogi, Y. Goto, and N. Iwai, “Assessment of plasma miRNAs in congestive heart failure,” Circulation Journal, vol. 75, no. 2, pp. 336–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Nabiałek, W. Wańha, D. Kula et al., “Circulating microRNAs (miR423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease,” Minerva Cardioangiologica, vol. 61, no. 6, pp. 627–637, 2013. View at Google Scholar · View at Scopus
  73. K.-L. Fan, H.-F. Zhang, J. Shen, Q. Zhang, and X.-L. Li, “Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy,” Indian Heart Journal, vol. 65, no. 1, pp. 12–16, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. A. J. Tijsen, E. E. Creemers, P. D. Moerland et al., “MiR423-5p as a circulating biomarker for heart failure,” Circulation Research, vol. 106, no. 6, pp. 1035–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Wang, A. B. Aurora, B. A. Johnson et al., “The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis,” Developmental Cell, vol. 15, no. 2, pp. 261–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Ren, J. Zhang, N. Xu et al., “Signature of circulating MicroRNAs As potential biomarkers in vulnerable coronary artery disease,” PLoS ONE, vol. 8, no. 12, Article ID e80738, 2013. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Bonauer, G. Carmona, M. Iwasaki et al., “MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in Mice,” Science, vol. 324, no. 5935, pp. 1710–1713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Suárez, C. Fernández-Hernando, J. Yu et al., “Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14082–14087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. Hu, X. Chen, Y. Zhao et al., “Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 10, pp. 1721–1726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. C.-Y. Lai, S.-L. Yu, M. H. Hsieh et al., “MicroRNA expression aberration as potential peripheral blood biomarkers for Schizophrenia,” PLoS ONE, vol. 6, no. 6, Article ID e21635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. E. M. Kroh, R. K. Parkin, P. S. Mitchell, and M. Tewari, “Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR),” Methods, vol. 50, no. 4, pp. 298–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. I. F. J. Oerlemans, A. Mosterd, M. S. Dekker et al., “Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs,” EMBO Molecular Medicine, vol. 4, no. 11, pp. 1176–1185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Bianchi, F. Nicassio, M. Marzi et al., “A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer,” EMBO Molecular Medicine, vol. 3, no. 8, pp. 495–503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Li, Z. Fang, T. Jiang et al., “Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris,” BMC Medical Genomics, vol. 6, no. 1, article 16, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Zampetaki, P. Willeit, L. Tilling et al., “Prospective study on circulating microRNAs and risk of myocardial infarction,” Journal of the American College of Cardiology, vol. 60, no. 4, pp. 290–299, 2012. View at Publisher · View at Google Scholar · View at Scopus