Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 825098, 11 pages
http://dx.doi.org/10.1155/2015/825098
Review Article

The Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment

1School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
2Department of Ecology and Evolutionary Biology, University of Kansas, Kansas Biological Survey, Lawrence, KS 66047, USA
3School of Biological Sciences, University of Wales, Bangor LL57 2UW, UK

Received 19 December 2014; Accepted 5 April 2015

Academic Editor: Aiyagari Ramesh

Copyright © 2015 Kyungjin Min et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Hättenschwiler and P. M. Vitousek, “The role of polyphenols in terrestrial ecosystem nutrient cycling,” Trends in Ecology and Evolution, vol. 15, no. 6, pp. 238–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Freeman, C. D. Evans, D. T. Monteith, B. Reynolds, and N. Fenner, “Export of organic carbon from peat soils,” Nature, vol. 412, no. 6849, p. 785, 2001. View at Google Scholar · View at Scopus
  3. P. Rovira and V. R. Vallejo, “Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach,” Geoderma, vol. 107, no. 1-2, pp. 109–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Toberman, R. Laiho, C. D. Evans et al., “Long-term drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat,” European Journal of Soil Science, vol. 61, no. 6, pp. 950–957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Schimel, R. G. Cates, and R. Ruess, “The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga,” Biogeochemistry, vol. 42, no. 1-2, pp. 221–234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. T. E. C. Kraus, R. J. Zasoski, and R. A. Dahlgren, “Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots,” Plant and Soil, vol. 262, no. 1-2, pp. 95–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Freeman, N. Fenner, and A. H. Shirsat, “Peatland geoengineering: an alternative approach to terrestrial carbon sequestration,” Philosophical Transactions of the Royal Society A, vol. 370, no. 1974, pp. 4404–4421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. M. Appel, “Phenolics in ecological interactions: the importance of oxidation,” Journal of Chemical Ecology, vol. 19, no. 7, pp. 1521–1552, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. T. E. C. Kraus, R. A. Dahlgren, and R. J. Zasoski, “Tannins in nutrient dynamics of forest ecosystems—a review,” Plant and Soil, vol. 256, no. 1, pp. 41–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. G. Cates and D. F. Rhoades, “Patterns in the production of antiherbivore chemical defenses in plant communities,” Biochemical Systematics and Ecology, vol. 5, no. 3, pp. 185–193, 1977. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1998. View at Google Scholar · View at Scopus
  12. J. D. Box, “Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters,” Water Research, vol. 17, no. 5, pp. 511–525, 1983. View at Publisher · View at Google Scholar · View at Scopus
  13. J. I. Hedges and J. R. Ertel, “Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products,” Analytical Chemistry, vol. 54, no. 2, pp. 174–178, 1982. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Kelley, D. Coffey, and T. Mueller, “Liquid chromatographic determination of phenolic acids in soil,” Journal of AOAC International, vol. 77, pp. 805–809, 1994. View at Google Scholar
  15. V. M. Hebatpuria, H. A. Arafat, H. S. Rho, P. L. Bishop, N. G. Pinto, and R. C. Buchanan, “Immobilization of phenol in cement-based solidified/stabilized hazardous wastes using regenerated activated carbon: leaching studies,” Journal of Hazardous Materials, vol. 70, no. 3, pp. 117–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. M. W. I. Schmidt, M. S. Torn, S. Abiven et al., “Persistence of soil organic matter as an ecosystem property,” Nature, vol. 478, no. 7367, pp. 49–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. T. Conant, M. G. Ryan, G. I. Ågren et al., “Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward,” Global Change Biology, vol. 17, no. 11, pp. 3392–3404, 2011. View at Publisher · View at Google Scholar
  18. J. A. J. Dungait, D. W. Hopkins, A. S. Gregory, and A. P. Whitmore, “Soil organic matter turnover is governed by accessibility not recalcitrance,” Global Change Biology, vol. 18, no. 6, pp. 1781–1796, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Gleixner, “Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies,” Ecological Research, vol. 28, no. 5, pp. 683–695, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. Parton, D. S. Schimel, C. V. Cole, and D. S. Ojima, “Analysis of factors controlling soil organic matter levels in Great Plains grasslands,” Soil Science Society of America Journal, vol. 51, no. 5, pp. 1173–1179, 1987. View at Publisher · View at Google Scholar · View at Scopus
  21. U. Blum, “Benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris,” Journal of Chemical Ecology, vol. 23, no. 2, pp. 347–362, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Arditsoglou and D. Voutsa, “Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices,” Environmental Science and Pollution Research, vol. 15, no. 3, pp. 228–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Mukhopadhyay, D. L. Luhria, and R. J. Robbins, “Optimization of extraction process for phenolic acids from black cohosh (Cimicifuga racemosa) by pressurized liquid extraction,” Journal of the Science of Food and Agriculture, vol. 86, no. 1, pp. 156–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Pind, C. Freeman, and M. A. Lock, “Enzymic degradation of phenolic materials in peatlands—measurement of phenol oxidase activity,” Plant and Soil, vol. 159, no. 2, pp. 227–231, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Stursova and R. L. Sinsabaugh, “Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation,” Soil Biology and Biochemistry, vol. 40, no. 2, pp. 550–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Kang, S.-H. Lee, S.-M. Lee, and S. Jung, “Positive relationships between phenol oxidase activity and extractable phenolics in estuarine soils,” Chemistry and Ecology, vol. 25, no. 2, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Thoss, A. Shevtsova, and M.-C. Nilsson, “Environmental manipulation treatment effects on the reactivity of water-soluble phenolics in a subalpine tundra ecosystem,” Plant and Soil, vol. 259, no. 1-2, pp. 355–365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Ohno and P. R. First, “Assessment of the Folin and Ciocalteu's method for determining soil phenolic carbon,” Journal of Environmental Quality, vol. 27, no. 4, pp. 776–782, 1998. View at Google Scholar · View at Scopus
  29. P. J. Kersten, B. Kalyanaraman, K. E. Hammel, B. Reinhammar, and T. K. Kirk, “Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes,” Biochemical Journal, vol. 268, no. 2, pp. 475–480, 1990. View at Google Scholar · View at Scopus
  30. S. R. Couto, D. Moldes, and M. A. Sanromán, “Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP,” World Journal of Microbiology and Biotechnology, vol. 22, no. 6, pp. 607–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. I.-C. Kuan, K. A. Johnson, and M. Tien, “Kinetic analysis of manganese peroxidase. The reaction with manganese complexes,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20064–20070, 1993. View at Google Scholar · View at Scopus
  32. C. Ruttimann-Johnson, D. Cullen, and R. T. Lamar, “Manganese peroxidases of the white rot fungus Phanerochaete sordida,” Applied and Environmental Microbiology, vol. 60, no. 2, pp. 599–605, 1994. View at Google Scholar · View at Scopus
  33. P. M. Coll, J. M. Fernandez-Abalos, J. R. Villanueva, R. Santamaria, and P. Perez, “Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971),” Applied and Environmental Microbiology, vol. 59, no. 8, pp. 2607–2613, 1993. View at Google Scholar · View at Scopus
  34. D. Litthauer, M. J. van Vuuren, A. van Tonder, and F. W. Wolfaardt, “Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108),” Enzyme and Microbial Technology, vol. 40, no. 4, pp. 563–568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Johjima, M. Ohkuma, and T. Kudo, “Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus,” Applied Microbiology and Biotechnology, vol. 61, no. 3, pp. 220–225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R. L. Prior, X. Wu, and K. Schaich, “Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements,” Journal of Agricultural and Food Chemistry, vol. 53, no. 10, pp. 4290–4302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Kiem and I. Kögel-Knabner, “Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils,” Soil Biology and Biochemistry, vol. 35, no. 1, pp. 101–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Theuerl, N. Dörr, G. Guggenberger et al., “Response of recalcitrant soil substances to reduced N deposition in a spruce forest soil: integrating laccase-encoding genes and lignin decomposition,” FEMS Microbiology Ecology, vol. 73, no. 1, pp. 166–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Otto and M. J. Simpson, “Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil,” Biogeochemistry, vol. 80, no. 2, pp. 121–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. T. S. Fukuji, F. G. Tonin, and M. F. M. Tavares, “Optimization of a method for determination of phenolic acids in exotic fruits by capillary electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 51, no. 2, pp. 430–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Bekkara, M. Jay, M. R. Viricel, and S. Rome, “Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations,” Plant and Soil, vol. 203, no. 1, pp. 27–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Schofield, A. E. Hagerman, and A. Harold, “Loss of tannins and other phenolics from: willow leaf litter,” Journal of Chemical Ecology, vol. 24, no. 8, pp. 1409–1421, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Sène, C. Gallet, and T. Doré, “Phenolic compounds in a Sahelian sorghum (Sorghum bicolor) genotype (CE145-66) and associated soils,” Journal of Chemical Ecology, vol. 27, no. 1, pp. 81–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Uzer, E. Ercag, H. Parlar, R. Apak, and H. Filik, “Spectrophotometric determination of 4,6-dinitro-o-cresol (DNOC) in soil and lemon juice,” Analytica Chimica Acta, vol. 580, no. 1, pp. 83–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. R. L. Sinsabaugh, “Phenol oxidase, peroxidase and organic matter dynamics of soil,” Soil Biology and Biochemistry, vol. 42, no. 3, pp. 391–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. R. L. Sinsabaugh, C. L. Lauber, M. N. Weintraub et al., “Stoichiometry of soil enzyme activity at global scale,” Ecology Letters, vol. 11, no. 11, pp. 1252–1264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. L. He, W. Xiang, and X. Sun, “Effects of temperature and water level changes on enzyme activities in two typical peatlands: implications for the responses of carbon cycling in peatland to global climate change,” in Proceedings of the International Conference on Environmental Science and Information Application Technology (ESIAT '09), pp. 18–22, IEEE, Wuhan, China, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. T. H. Bell and H. A. L. Henry, “Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system,” Pedobiologia, vol. 54, no. 2, pp. 141–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. C. A. Lehmeier, K. Min, N. D. Niehues, F. Ballantyne, and S. A. Billings, “Temperature-mediated changes of exoenzyme-substrate reaction rates and their consequences for the carbon to nitrogen flow ratio of liberated resources,” Soil Biology and Biochemistry, vol. 57, pp. 374–382, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Fenner, C. Freeman, and B. Reynolds, “Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies,” Soil Biology and Biochemistry, vol. 37, no. 10, pp. 1814–1821, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Yao, D. Bowman, T. Rufty, and W. Shi, “Interactions between N fertilization, grass clipping addition and pH in turf ecosystems: implications for soil enzyme activities and organic matter decomposition,” Soil Biology and Biochemistry, vol. 41, no. 7, pp. 1425–1432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. P. Waldrop and D. R. Zak, “Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon,” Ecosystems, vol. 9, no. 6, pp. 921–933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. M. P. Waldrop and J. W. Harden, “Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest,” Global Change Biology, vol. 14, no. 11, pp. 2591–2602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. A. White, C. Freeman, and H. Kang, “Plant-derived phenolic compounds impair the remediation of acid mine drainage using treatment wetlands,” Ecological Engineering, vol. 37, no. 2, pp. 172–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. G. D. Bending and D. J. Read, “Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi,” Mycological Research, vol. 101, no. 11, pp. 1348–1354, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Tian, E. Dell, and W. Shi, “Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization,” Applied Soil Ecology, vol. 46, no. 3, pp. 426–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. R. M. Burke and J. W. G. Cairney, “Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi,” Mycorrhiza, vol. 12, no. 3, pp. 105–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Siegenthaler, A. Buttler, L. Bragazza et al., “Litter- and ecosystem-driven decomposition under elevated CO2 and enhanced N deposition in a Sphagnum peatland,” Soil Biology and Biochemistry, vol. 42, no. 6, pp. 968–977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. J. M. Melillo, J. D. Aber, and J. F. Muratore, “Nitrogen and lignin control of hardwood leaf litter decomposition dynamics,” Ecology, vol. 63, no. 3, pp. 621–626, 1982. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Aerts and H. de Caluwe, “Nutritional and plant-mediated controls on leaf litter decomposition of Carex species,” Ecology, vol. 78, no. 1, pp. 244–260, 1997. View at Google Scholar · View at Scopus
  61. V. Nicolai, “Phenolic and mineral content of leaves influences decomposition in European forest ecosystems,” Oecologia, vol. 75, no. 4, pp. 575–579, 1988. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Bernhard-Reversat, G. Main, K. Holl, J. Loumeto, and J. Ngao, “Fast disappearance of the water-soluble phenolic fraction in eucalypt leaf litter during laboratory and field experiments,” Applied Soil Ecology, vol. 23, no. 3, pp. 273–278, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Rumpel, I. Kögel-Knabner, and F. Bruhn, “Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis,” Organic Geochemistry, vol. 33, no. 10, pp. 1131–1142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. D. E. Stott, G. Kassim, W. M. Jarrell, J. P. Martin, and K. Haider, “Stabilization and incorporation into biomass of specific plant carbons during biodegradation in soil,” Plant and Soil, vol. 70, no. 1, pp. 15–26, 1983. View at Publisher · View at Google Scholar · View at Scopus
  65. R. R. Northup, R. A. Dahlgren, and J. G. McColl, “Polyphenols as regulators of plant-litter-soil interactions in northern California's pygmy forest: a positive feedback?” Biogeochemistry, vol. 42, no. 1-2, pp. 189–220, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Bernhard-Reversat, “Changes in relationships between initial litter quality and CO2 release during early laboratory decomposition of tropical leaf litters,” European Journal of Soil Biology, vol. 34, no. 3, pp. 117–122, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Opelt, V. Chobot, F. Hadacek, S. Schönmann, L. Eberl, and G. Berg, “Investigations of the structure and function of bacterial communities associated with Sphagnum mosses,” Environmental Microbiology, vol. 9, no. 11, pp. 2795–2809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Mellegård, T. Stalheim, V. Hormazabal, P. E. Granum, and S. P. Hardy, “Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria,” Letters in Applied Microbiology, vol. 49, no. 1, pp. 85–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Freeman, N. Fenner, N. J. Ostle et al., “Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels,” Nature, vol. 430, no. 6996, pp. 195–198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Minderlein and C. Blodau, “Humic-rich peat extracts inhibit sulfate reduction, methanogenesis, and anaerobic respiration but not acetogenesis in peat soils of a temperate bog,” Soil Biology and Biochemistry, vol. 42, no. 12, pp. 2078–2086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. R. R. Northup, Z. Yu, R. A. Dahlren, and K. A. Vogt, “Polyphenol control of nitrogen release from pine litter,” Nature, vol. 377, no. 6546, pp. 227–229, 1995. View at Publisher · View at Google Scholar · View at Scopus
  72. E. T. Denisov and I. V. Khudyakov, “Mechanisms of action and reactivities of the free radicals of inhibitors,” Chemical Reviews, vol. 87, no. 6, pp. 1313–1357, 1987. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Stalheim, S. Ballance, B. E. Christensen, and P. E. Granum, “Sphagnan—A pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH,” Journal of Applied Microbiology, vol. 106, no. 3, pp. 967–976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. T. J. Painter, “Lindow man, tollund man and other peat-bog bodies: the preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties,” Carbohydrate Polymers, vol. 15, no. 2, pp. 123–142, 1991. View at Publisher · View at Google Scholar · View at Scopus
  75. R. G. Wetzel, “Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems,” Hydrobiologia, vol. 229, no. 1, pp. 181–198, 1992. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Fierer, J. P. Schimel, R. G. Cates, and J. Zou, “Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils,” Soil Biology and Biochemistry, vol. 33, no. 12-13, pp. 1827–1839, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. H. W. Müller, W. Trösch, and K. D. Kulbe, “Effect of phenolic compounds on cellulose degradation by some white rot basidiomycetes,” FEMS Microbiology Letters, vol. 49, no. 1, pp. 87–93, 1988. View at Publisher · View at Google Scholar · View at Scopus
  78. Inderjit and A. U. Mallik, “Effect of phenolic compounds on selected soil properties,” Forest Ecology and Management, vol. 92, no. 1-3, pp. 11–18, 1997. View at Publisher · View at Google Scholar · View at Scopus
  79. C. L. Meier and W. D. Bowman, “Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth,” Oecologia, vol. 158, no. 1, pp. 95–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. J. Hoostal and J. L. Bouzat, “The modulating role of dissolved organic matter on spatial patterns of microbial metabolism in Lake Erie sediments,” Microbial Ecology, vol. 55, no. 2, pp. 358–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Peñuelas and M. Estiarte, “Can elevated CO2 affect secondary metabolism and ecosystem function?” Trends in Ecology and Evolution, vol. 13, no. 1, pp. 20–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. F. L. Booker and C. A. Maier, “Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles,” Tree Physiology, vol. 21, no. 9, pp. 609–616, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Räisänen, A. Ryyppö, R. Julkunen-Tiitto, and S. Kellomäki, “Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.),” Trees, vol. 22, no. 1, pp. 121–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Ghasemzadeh and H. Z. E. Jaafar, “Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe),” International Journal of Molecular Sciences, vol. 12, no. 2, pp. 1101–1114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. S.-Y. Kim and H. Kang, “Effects of elevated CO2 on below-ground processes in temperate marsh microcosms,” Hydrobiologia, vol. 605, no. 1, pp. 123–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Li, S. Han, Z. Guo, D. Shao, and L. Xin, “Changes in soil microbial biomass carbon and enzyme activities under elevated CO2 affect fine root decomposition processes in a Mongolian oak ecosystem,” Soil Biology and Biochemistry, vol. 42, no. 7, pp. 1101–1107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Ellis, P. W. Hill, N. Fenner, G. G. Williams, D. Godbold, and C. Freeman, “The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog,” Ecological Engineering, vol. 35, no. 6, pp. 978–986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, and J. G. Canadell, “Elevated CO2, litter chemistry, and decomposition: a synthesis,” Oecologia, vol. 127, no. 2, pp. 153–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. W. Yi and H. Y. Wetzstein, “Biochemical, biological and histological evaluation of some culinary and medicinal herbs grown under greenhouse and field conditions,” Journal of the Science of Food and Agriculture, vol. 90, no. 6, pp. 1063–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. T. O. Veteli, W. J. Mattson, P. Niemelä et al., “Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees?” Journal of Chemical Ecology, vol. 33, no. 2, pp. 287–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. E. L. Zvereva and M. V. Kozlov, “Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis,” Global Change Biology, vol. 12, no. 1, pp. 27–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Witzell and A. Shevtsova, “Nitrogen-induced changes in phenolics of Vaccinium myrtillus—implications for interaction with a parasitic fungus,” Journal of Chemical Ecology, vol. 30, no. 10, pp. 1937–1956, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Shevtsova, M.-C. Nilsson, C. Gallet, O. Zackrisson, and A. Jäderlund, “Effects of long-term alleviation of nutrient limitation on shoot growth and foliar phenolics of Empetrum hermaphroditum,” Oikos, vol. 111, no. 3, pp. 445–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Nybakken, O. Johansson, and K. Palmqvist, “Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition,” Global Change Biology, vol. 15, no. 9, pp. 2247–2260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. M. P. Waldrop, D. R. Zak, R. L. Sinsabaugh, M. Gallo, and C. Lauber, “Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity,” Ecological Applications, vol. 14, no. 4, pp. 1172–1177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Bragazza, C. Freeman, T. Jones et al., “Atmospheric nitrogen deposition promotes carbon loss from peat bogs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 51, pp. 19386–19389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Freeman, G. Liska, N. J. Ostle, M. A. Lock, B. Reynolds, and J. Hudson, “Microbial activity and enzymic decomposition processes following peatland water table drawdown,” Plant and Soil, vol. 180, no. 1, pp. 121–127, 1996. View at Publisher · View at Google Scholar · View at Scopus
  98. C. J. Williams, E. A. Shingara, and J. B. Yavitt, “Phenol oxidase activity in peatlands in New York state: response to summer drought and peat type,” Wetlands, vol. 20, no. 2, pp. 416–421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Fenner, C. Freeman, and B. Reynolds, “Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: implications for carbon cycling,” Soil Biology and Biochemistry, vol. 37, no. 7, pp. 1277–1287, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Toberman, C. Freeman, R. R. E. Artz, C. D. Evans, and N. Fenner, “Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores,” Soil Use and Management, vol. 24, no. 4, pp. 357–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Matros, S. Amme, B. Kettig, G. H. Buck-Sorlin, U. Sonnewald, and H.-P. Mock, “Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y,” Plant, Cell and Environment, vol. 29, no. 1, pp. 126–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. W. J. Mattson, R. Julkunen-Tiitto, and D. A. Herms, “CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models?” Oikos, vol. 111, no. 2, pp. 337–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Bazin, M. Goverde, A. Erhardt, and J. A. Shykoff, “Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus,” Ecological Entomology, vol. 27, no. 3, pp. 271–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. R. L. Lindroth, B. J. Kopper, W. F. J. Parsons et al., “Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera),” Environmental Pollution, vol. 115, no. 3, pp. 395–404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. X. Feng, A. J. Simpson, W. H. Schlesinger, and M. J. Simpson, “Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest,” Global Change Biology, vol. 16, no. 7, pp. 2104–2116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. T. H. Bell, J. N. Klironomos, and H. A. L. Henry, “Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition,” Soil Science Society of America Journal, vol. 74, no. 3, pp. 820–828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. A. H. Hansen, S. Jonasson, A. Michelsen, and R. Julkunen-Tiitto, “Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs,” Oecologia, vol. 147, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Fenner, C. Freeman, M. A. Lock, H. Harmens, B. Reynolds, and T. Sparks, “Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments,” Environmental Science and Technology, vol. 41, no. 9, pp. 3146–3152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Greven, S. Neal, S. Green, B. Dichio, and B. Clothier, “The effects of drought on the water use, fruit development and oil yield from young olive trees,” Agricultural Water Management, vol. 96, no. 11, pp. 1525–1531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. I. N. De Abreu and P. Mazzafera, “Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy,” Plant Physiology and Biochemistry, vol. 43, no. 3, pp. 241–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. C. E. Coviella, R. D. Stipanovic, and J. T. Trumble, “Plant allocation to defensive compounds: Interactions between elevated CO2 and nitrogen in transgenic cotton plants,” Journal of Experimental Botany, vol. 53, no. 367, pp. 323–331, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. L. Nybakken, K. Klanderud, and Ø. Totland, “Simulated environmental change has contrasting effects on defensive compound concentration in three alpine plant species,” Arctic, Antarctic, and Alpine Research, vol. 40, no. 4, pp. 709–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Freeman, N. Ostle, and H. Kang, “An enzymic ‘latch’ on a global carbon store: a shortage of oxygen locks up carbon in peatlands by restraining a single enzymes,” Nature, vol. 409, no. 6817, p. 149, 2001. View at Google Scholar · View at Scopus
  114. N. Fenner and C. Freeman, “Drought-induced carbon loss in peatlands,” Nature Geoscience, vol. 4, no. 12, pp. 895–900, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. D. P. Cole, E. A. Smith, and Y. J. Lee, “High-resolution mass spectrometric characterization of molecules on biochar from pyrolysis and gasification of switchgrass,” Energy & Fuels, vol. 26, no. 6, pp. 3803–3809, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Yoo and H. Kang, “Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment,” Journal of Environmental Quality, vol. 41, no. 4, pp. 1193–1202, 2012. View at Publisher · View at Google Scholar · View at Scopus