Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 893163, 14 pages
http://dx.doi.org/10.1155/2015/893163
Research Article

Alleviation of Kainic Acid-Induced Brain Barrier Dysfunction by 4-O-Methylhonokiol in In Vitro and In Vivo Models

1Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
2Lee’s Biotech Co., Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-606, Republic of Korea
3College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
4College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea

Received 22 April 2014; Revised 6 August 2014; Accepted 11 August 2014

Academic Editor: Yiying Zhang

Copyright © 2015 Jin-Yi Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kuribara, E. Kishi, N. Hattori, M. Okada, and Y. Maruyama, “The anxiolytic effect of two oriental herbal drugs in Japan attributed to honokiol from magnolia bark,” Journal of Pharmacy and Pharmacology, vol. 52, no. 11, pp. 1425–1429, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Li, C. Xu, Q. Zhang, J. Y. Liu, and R. X. Tan, “In vitro anti-Helicobacter pylori action of 30 Chinese herbal medicines used to treat ulcer diseases,” Journal of Ethnopharmacology, vol. 98, no. 3, pp. 329–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. Lee, Y. K. Lee, B. J. Lee et al., “Inhibitory effect of ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid,” Pharmacology Biochemistry and Behavior, vol. 95, no. 1, pp. 31–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Oh, L. L. Kang, J. O. Ban et al., “Anti-inflammatory effect of 4-O-methylhonokiol, compound isolated from Magnolia officinalis through inhibition of NF-kappaB,” Chemico-Biological Interactions, vol. 180, pp. 506–514, 2009. View at Publisher · View at Google Scholar
  5. Y. K. Lee, I. S. Choi, Y. H. Kim et al., “Neurite outgrowth effect of 4-o-methylhonokiol by induction of neurotrophic factors through ERK activation,” Neurochemical Research, vol. 34, no. 12, pp. 2251–2260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Zhao and Z.-Q. Liu, “Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA,” Biochimie, vol. 93, no. 10, pp. 1755–1760, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-C. Shen, C.-L. Ni, Y.-C. Shen et al., “Phenolic constituents from the stem bark of Magnolia officinalis,” Journal of Natural Products, vol. 72, no. 1, pp. 168–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Taira, T. Ikemoto, K. Mimura, A. Hagi, A. Murakami, and K. Makino, “Effective inhibition of hydroxyl radicals by hydroxylated biphenyl compounds,” Free Radical Research Communications, vol. 19, supplement 1, pp. S71–S77, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Structure-antioxidant activity relationships of flavonoids and phenolic acids,” Free Radical Biology & Medicine, vol. 20, no. 7, pp. 933–956, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. M. P. Remler and W. H. Marcussen, “The blood-brain barrier lesion and the systemic convulsant model of epilepsy,” Epilepsia, vol. 25, no. 5, pp. 574–577, 1984. View at Publisher · View at Google Scholar · View at Scopus
  11. W. D. Stein, The Movement of Molecules Across Cell Membranes, Elsevier, San Diego, Calif, USA, 1967.
  12. Y.-R. Lin, H.-H. Chen, C.-H. Ko, and M.-H. Chan, “Differential inhibitory effects of honokiol and magnolol on excitatory amino acid-evoked cation signals and NMDA-induced seizures,” Neuropharmacology, vol. 49, no. 4, pp. 542–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-R. Lin, H.-H. Chen, C.-H. Ko, and M.-H. Chan, “Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage,” European Journal of Pharmacology, vol. 537, no. 1–3, pp. 64–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y.-R. Lin, H.-H. Chen, Y.-C. Lin, C.-H. Ko, and M.-H. Chan, “Antinociceptive actions of honokiol and magnolol on glutamatergic and inflammatory pain,” Journal of Biomedical Science, vol. 16, no. 1, article 94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-C. Ou, F.-P. Chou, T.-M. Lin, C.-H. Yang, and W. H.-H. Sheu, “Protective effects of honokiol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells,” Chemico-Biological Interactions, vol. 161, no. 1, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Siegel, D. L. Gustafson, D. L. Dehn et al., “NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger,” Molecular Pharmacology, vol. 65, no. 5, pp. 1238–1247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Y. Han, J. T. Hong, and K.-W. Oh, “In vivo electron spin resonance: an effective new tool for reactive oxygen species/reactive nitrogen species measurement,” Archives of Pharmacal Research, vol. 33, no. 9, pp. 1293–1299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Utsumi, J. Y. Han, and K. Takeshita, “Develpment of in vivo ESR/spin probe technique for oxidative injuries,” in EPR in the 21th Century, pp. 533–541, 2002. View at Google Scholar
  19. G. R. Buettner and R. P. Mason, “Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo,” Methods in Enzymology, vol. 186, pp. 127–133, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Turner III and G. M. Rosen, “Spin trapping of superoxide and hydroxyl radicals with substituted pyrroline 1-oxides,” Journal of Medicinal Chemistry, vol. 29, no. 12, pp. 2439–2444, 1986. View at Publisher · View at Google Scholar · View at Scopus
  21. G. M. Rosen and E. J. Rauckman, “Spin trapping of superoxide and hydroxyl radicals,” Methods in Enzymology, vol. 105, pp. 198–209, 1984. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Akaike, H. Katsuki, T. Kume, and T. Maeda, “Reactive oxygen species in NMDA receptor-mediated glutamate neurotoxicity,” Parkinsonism and Related Disorders, vol. 5, no. 4, pp. 203–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. D. W. Choi, “Glutamate neurotoxicity and diseases of the nervous system,” Neuron, vol. 1, no. 8, pp. 623–634, 1988. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Rothman, “The neurotoxicity of excitatory amino acids is produced by passive chloride influx,” Journal of Neuroscience, vol. 5, no. 6, pp. 1483–1489, 1985. View at Google Scholar · View at Scopus
  25. J. W. Olney, M. T. Price, L. Samson, and J. Labruyere, “The role of specific ions in glutamate neurotoxicity,” Neuroscience Letters, vol. 65, no. 1, pp. 65–71, 1986. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Marchi, L. Angelov, T. Masaryk et al., “Seizure-promoting effect of blood-brain barrier disruption,” Epilepsia, vol. 48, no. 4, pp. 732–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. van Vliet, S. D. C. Araújo, S. Redeker, R. van Schaik, E. Aronica, and J. A. Gorter, “Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy,” Brain, vol. 130, no. 2, pp. 521–534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Begley, “The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system,” Journal of Pharmacy and Pharmacology, vol. 48, no. 2, pp. 136–146, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Misra, S. Ganesh, A. Shahiwala, and S. P. Shah, “Drug delivery to the central nervous system: a review,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 2, pp. 252–273, 2003. View at Google Scholar · View at Scopus
  30. J. Bernacki, A. Dobrowolska, K. Nierwinska, and A. Malecki, “Physiology and pharmacological role of the blood-brain barrier,” Pharmacological Reports, vol. 60, no. 5, pp. 600–622, 2008. View at Google Scholar
  31. A. Minagar and J. S. Alexander, “Blood-brain barrier disruption in multiple sclerosis,” Multiple Sclerosis, vol. 9, no. 6, pp. 540–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Ballabh, A. Braun, and M. Nedergaard, “The blood-brain barrier: an overview: structure, regulation, and clinical implications,” Neurobiology of Disease, vol. 16, no. 1, pp. 1–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. B. T. Hawkins and T. P. Davis, “The blood-brain barrier/neurovascular unit in health and disease,” Pharmacological Reviews, vol. 57, no. 2, pp. 173–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. E. Moor, H. E. de Vries, A. G. de Boer, and D. D. Breimer, “The blood-brain barrier and multiple sclerosis,” Biochemical Pharmacology, vol. 47, no. 10, pp. 1717–1724, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. E. M. Cornford and W. H. Oldendorf, “Epilepsy and the blood-brain barrier,” Advances in Neurology, vol. 44, pp. 787–812, 1986. View at Google Scholar · View at Scopus
  36. Y. Komarova and A. B. Malik, “Regulation of endothelial permeability via paracellular and transcellular transport pathways,” Annual Review of Physiology, vol. 72, pp. 463–493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Janigro, “Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier,” Epilepsia, vol. 53, supplement 1, pp. 26–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. P. H. Elsinga, N. H. Hendrikse, J. Bart, W. Vaalburg, and A. van Waarde, “PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS,” Current Pharmaceutical Design, vol. 10, no. 13, pp. 1493–1503, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. K. Lee, D. Y. Yuk, T. I. Kim et al., “Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity,” Journal of Natural Medicines, vol. 63, no. 3, pp. 274–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. K. V. Rao and T. L. Davis, “Constituents of Magnolia grandiflora I: mono-O-methylhonokiol,” Planta Medica, vol. 45, no. 1, pp. 57–59, 1982. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Y. Zhou, E. M. Shin, L. Y. Guo et al., “Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-κB, JNK and p38 MAPK inactivation,” European Journal of Pharmacology, vol. 586, no. 1–3, pp. 340–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Lesuisse, D. Qiu, C. M. Böse, K. Nakaso, and F. Rupp, “Regulation of agrin expression in hippocampal neurons by cell contact and electrical activity,” Molecular Brain Research, vol. 81, no. 1-2, pp. 92–100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. S.-Y. Li, J.-H. Ni, D.-S. Xu, and H.-T. Jia, “Down-regulation of GluR2 is associated with Ca2+-dependent protease activities in kainate-induced apoptotic cell death in culturd rat hippocampal neurons,” Neuroscience Letters, vol. 352, no. 2, pp. 105–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Wang and J. A. Joseph, “Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader,” Free Radical Biology and Medicine, vol. 27, no. 5-6, pp. 612–616, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. P. W. Hamer, J. M. McGeachie, M. J. Davies, and M. D. Grounds, “Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability,” Journal of Anatomy, vol. 200, no. 1, pp. 69–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. R. J. Racine, J. G. Gartner, and W. McIntyre Burnham, “Epileptiform activity and neural plasticity in limbic structures,” Brain Research, vol. 47, no. 1, pp. 262–268, 1972. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Suematsu, T. Kamada, H. Abe, S. Kikuchi, and K. Yagi, “Serum lipoperoxide level in patients suffering from liver diseases,” Clinica Chimica Acta, vol. 79, no. 1, pp. 267–270, 1977. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Marxen, K. H. Vanselow, S. Lippemeier, R. Hintze, A. Ruser, and U.-P. Hansen, “Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements,” Sensors, vol. 7, no. 10, pp. 2080–2095, 2007. View at Google Scholar · View at Scopus
  49. J. T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disorders,” Science, vol. 262, no. 5134, pp. 689–695, 1993. View at Google Scholar · View at Scopus
  50. Q. R. Smith, “Transport of glutamate and other amino acids at the blood-brain barrier,” Journal of Nutrition, vol. 130, no. 4, pp. 1016S–1022S, 2000. View at Google Scholar · View at Scopus
  51. F.-N. Ko, T.-F. Huang, and C.-M. Teng, “Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta,” Biochimica et Biophysica Acta—General Subjects, vol. 1115, no. 1, pp. 69–74, 1991. View at Publisher · View at Google Scholar · View at Scopus
  52. J.-Y. Han, S.-Y. Ahn, E.-H. Oh et al., “Red ginseng extract attenuates kainate-induced excitotoxicity by antioxidative effects,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 479016, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. W. D. Lo and A. L. Betz, “Oxygen free-radical reduction of brain capillary rubidium uptake,” Journal of Neurochemistry, vol. 46, no. 2, pp. 394–398, 1986. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Zheng and S. Y. Wang, “Antioxidant activity and phenolic compounds in selected herbs,” Journal of Agricultural and Food Chemistry, vol. 49, no. 11, pp. 5165–5170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Cai, Q. Luo, M. Sun, and H. Corke, “Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer,” Life Sciences, vol. 74, no. 17, pp. 2157–2184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. H. Kong, Y. C. Lee, and S. Y. Choi, “Neuroprotecyive and anti-inflammatory effects of phenolic compounds in panax ginseng C. A. Meyer,” Journal of Ginseng Research, vol. 23, pp. 111–114, 2009. View at Google Scholar
  57. E. G. Chikhale, K. Ng, P. S. Burton, and R. T. Borchardt, “Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides,” Pharmaceutical Research, vol. 11, no. 3, pp. 412–419, 1994. View at Publisher · View at Google Scholar · View at Scopus
  58. L. González-Mariscal, A. Betanzos, P. Nava, and B. E. Jaramillo, “Tight junction proteins,” Progress in Biophysics and Molecular Biology, vol. 81, no. 1, pp. 1–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. L. L. Rubin and J. M. Staddon, “The cell biology of the blood-brain barrier,” Annual Review of Neuroscience, vol. 22, pp. 11–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Bazzoni, “The JAM family of junctional adhesion molecules,” Current Opinion in Cell Biology, vol. 15, no. 5, pp. 525–530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Bazzoni and E. Dejana, “Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis,” Physiological Reviews, vol. 84, no. 3, pp. 869–901, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Krause, L. Winkler, S. L. Mueller, R. F. Haseloff, J. Piontek, and I. E. Blasig, “Structure and function of claudins,” Biochimica et Biophysica Acta, vol. 1778, no. 3, pp. 631–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Morita, H. Sasaki, M. Furuse, and S. Tsukita, “Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells,” The Journal of Cell Biology, vol. 147, no. 1, pp. 185–194, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. C. M. van Itallie and J. M. Anderson, “The role of claudins in determining paracellular charge selectivity,” Proceedings of the American Thoracic Society, vol. 1, no. 1, pp. 38–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Matter and M. S. Balda, “Holey barrier: claudins and the regulation of brain endothelial permeability,” Journal of Cell Biology, vol. 161, no. 3, pp. 459–460, 2003. View at Publisher · View at Google Scholar · View at Scopus