Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 901041, 6 pages
http://dx.doi.org/10.1155/2015/901041
Review Article

The Roles of Hedgehog Signaling in Upper Lip Formation

Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan

Received 9 March 2015; Accepted 20 August 2015

Academic Editor: Sung-Hoon Kim

Copyright © 2015 Hiroshi Kurosaka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Dixon, M. L. Marazita, T. H. Beaty, and J. C. Murray, “Cleft lip and palate: understanding genetic and environmental influences,” Nature Reviews Genetics, vol. 12, no. 3, pp. 167–178, 2011. View at Publisher · View at Google Scholar
  2. Y. Nagase, N. Natsume, T. Kato, and T. Hayakawa, “Epidemiological analysis of cleft lip and/or palate by cleft pattern,” Journal of Maxillofacial and Oral Surgery, vol. 9, no. 4, pp. 389–395, 2010. View at Publisher · View at Google Scholar
  3. K. H. Wang, C. L. Heike, M. D. Clarkson et al., “Evaluation and integration of disparate classification systems for clefts of the lip,” Frontiers in Physiology, vol. 5, article 163, 2014. View at Publisher · View at Google Scholar
  4. E. J. Leslie and M. L. Marazita, “Genetics of cleft lip and cleft palate,” American Journal of Medical Genetics C: Seminars in Medical Genetics, vol. 163, no. 4, pp. 246–258, 2013. View at Publisher · View at Google Scholar
  5. M. Varjosalo and J. Taipale, “Hedgehog: functions and mechanisms,” Genes & Development, vol. 22, no. 18, pp. 2454–2472, 2008. View at Publisher · View at Google Scholar
  6. R. J. Lipinski, C. Song, K. K. Sulik et al., “Cleft lip and palate results from Hedgehog signaling antagonism in the mouse: phenotypic characterization and clinical implications,” Birth Defects Research Part A: Clinical and Molecular Teratology, vol. 88, no. 4, pp. 232–240, 2010. View at Publisher · View at Google Scholar
  7. H. Kurosaka, A. Iulianella, T. Williams, and P. A. Trainor, “Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis,” The Journal of Clinical Investigation, vol. 124, no. 4, pp. 1660–1671, 2014. View at Publisher · View at Google Scholar
  8. R. Rice, B. Spencer-Dene, E. C. Connor et al., “Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate,” The Journal of Clinical Investigation, vol. 113, no. 12, pp. 1692–1700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Lan and R. Jiang, “Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth,” Development, vol. 136, no. 8, pp. 1387–1396, 2009. View at Publisher · View at Google Scholar
  10. M. T. Cobourne and J. B. Green, “Hedgehog signalling in development of the secondary palate,” Frontiers of Oral Biology, vol. 16, pp. 52–59, 2012. View at Publisher · View at Google Scholar
  11. M. Seppala, M. J. Depew, D. C. Martinelli, C. Fan, P. T. Sharpe, and M. T. Cobourne, “Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog,” The Journal of Clinical Investigation, vol. 117, no. 6, pp. 1575–1584, 2007. View at Publisher · View at Google Scholar
  12. N. Ohbayashi and K. Eto, “Relative contributions of the facial processes to facial development: a microsurgical assay,” Journal of Craniofacial Genetics and Developmental Biology, vol. 6, no. 2, pp. 41–44, 1986. View at Google Scholar · View at Scopus
  13. K. Eto, A. Figueroa, G. Tamura, and R. M. Pratt, “Induction of cleft lip in cultured rat embryos by localized administration of tunicamycin,” Journal of Embryology and Experimental Morphology, vol. 64, pp. 1–9, 1981. View at Google Scholar · View at Scopus
  14. R. Jiang, J. O. Bush, and A. C. Lidral, “Development of the upper lip: morphogenetic and molecular mechanisms,” Developmental Dynamics, vol. 235, no. 5, pp. 1152–1166, 2006. View at Publisher · View at Google Scholar
  15. T. C. Cox, “Taking it to the max: the genetic and developmental mechanisms coordinating midfacial morphogenesis and dysmorphology,” Clinical Genetics, vol. 65, no. 3, pp. 163–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. N. M. Young, D. Hu, A. J. Lainoff et al., “Embryonic bauplans and the developmental origins of facial diversity and constraint,” Development, vol. 141, no. 5, pp. 1059–1063, 2014. View at Publisher · View at Google Scholar
  17. N. Honarpour, C. Du, J. A. Richardson, R. E. Hammer, X. Wang, and J. Herz, “Adult Apaf-1-deficient mice exhibit male infertility,” Developmental Biology, vol. 218, no. 2, pp. 248–258, 2000. View at Publisher · View at Google Scholar
  18. J.-Z. Jin and J. Ding, “Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion,” Development, vol. 133, no. 17, pp. 3341–3347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Sun, S. Baur, and E. D. Hay, “Epithelial-mesenchymal transformation is the mechanism for fusion of the craniofacial primordia involved in morphogenesis of the chicken lip,” Developmental Biology, vol. 228, no. 2, pp. 337–349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Richardson, J. Dixon, R. Jiang, and M. J. Dixon, “Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence,” Human Molecular Genetics, vol. 18, no. 14, pp. 2632–2642, 2009. View at Publisher · View at Google Scholar
  21. F. Moretti, B. Marinari, N. Lo Iacono et al., “A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias,” The Journal of Clinical Investigation, vol. 120, no. 5, pp. 1570–1577, 2010. View at Publisher · View at Google Scholar
  22. H. A. Thomason, H. Zhou, E. N. Kouwenhoven et al., “Cooperation between the transcription factors p63 and IRF6 is essential to prevent cleft palate in mice,” The Journal of Clinical Investigation, vol. 120, no. 5, pp. 1561–1569, 2010. View at Publisher · View at Google Scholar
  23. R. J. Richardson, N. L. Hammond, P. A. Coulombe et al., “Periderm prevents pathological epithelial adhesions during embryogenesis,” Journal of Clinical Investigation, vol. 124, no. 9, pp. 3891–3900, 2014. View at Publisher · View at Google Scholar
  24. D. Hu, R. S. Marcucio, and J. A. Helms, “A zone of frontonasal ectoderm regulates patterning and growth in the face,” Development, vol. 130, no. 9, pp. 1749–1758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Hu and R. S. Marcucio, “Unique organization of the frontonasal ectodermal zone in birds and mammals,” Developmental Biology, vol. 325, no. 1, pp. 200–210, 2009. View at Publisher · View at Google Scholar
  26. D. Hu and R. S. Marcucio, “A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm,” Development, vol. 136, no. 1, pp. 107–116, 2008. View at Publisher · View at Google Scholar
  27. S. Foppiano, D. Hu, and R. S. Marcucio, “Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development,” Developmental Biology, vol. 312, no. 1, pp. 103–114, 2007. View at Publisher · View at Google Scholar
  28. K. Aoto, Y. Shikata, H. Imai et al., “Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis,” Developmental Biology, vol. 327, no. 1, pp. 106–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. F. Dennis, H. Kurosaka, A. Iulianella et al., “Mutations in Hedgehog acyltransferase (Hhat) perturb Hedgehog signaling, resulting in severe acrania-holoprosencephaly-agnathia craniofacial defects,” PLoS Genetics, vol. 8, no. 10, Article ID e1002927, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Aoto and P. A. Trainor, “Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival,” Human Molecular Genetics, vol. 24, no. 3, pp. 698–713, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Seppala, G. M. Xavier, C. Fan, and M. T. Cobourne, “Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function,” Biology Open, vol. 3, no. 8, pp. 728–740, 2014. View at Publisher · View at Google Scholar
  32. R. J. Lipinski, P. R. Hutson, P. W. Hannam et al., “Dose- and route-dependent teratogenicity, toxicity, and pharmacokinetic profiles of the hedgehog signaling antagonist cyclopamine in the mouse,” Toxicological Sciences, vol. 104, no. 1, pp. 189–197, 2008. View at Publisher · View at Google Scholar
  33. V. Metzis, A. D. Courtney, M. C. Kerr et al., “Patched1 is required in neural crest cells for the prevention of orofacial clefts,” Human Molecular Genetics, vol. 22, no. 24, pp. 5026–5035, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Rohatgi, L. Milenkovic, and M. P. Scott, “Patched1 regulates hedgehog signaling at the primary cilium,” Science, vol. 317, no. 5836, pp. 372–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Jeong, J. Mao, T. Tenzen, A. H. Kottmann, and A. P. McMahon, “Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia,” Genes & Development, vol. 18, no. 8, pp. 937–951, 2004. View at Publisher · View at Google Scholar
  36. M. T. Cobourne, G. M. Xavier, M. Depew et al., “Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome,” Developmental Biology, vol. 331, no. 1, pp. 38–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Hu, N. M. Young, X. Li, Y. Xu, B. Hallgrımsson, and R. S. Marcucio, “A dynamic shh expression pattern, regulated by shh and bmp signaling, coordinates fusion of primordia in the amniote face,” Development, vol. 142, no. 3, pp. 567–574, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. G. M. Xavier, L. Panousopoulos, and M. T. Cobourne, “Scube3 is expressed in multiple tissues during development but is dispensable for embryonic survival in the mouse,” PLoS ONE, vol. 8, no. 1, Article ID e55274, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. S. C. Goetz and K. V. Anderson, “The primary cilium: a signalling centre during vertebrate development,” Nature Reviews Genetics, vol. 11, no. 5, pp. 331–344, 2010. View at Publisher · View at Google Scholar
  40. P. J. Ocbina, J. T. Eggenschwiler, I. Moskowitz, and K. V. Anderson, “Complex interactions between genes controlling trafficking in primary cilia,” Nature Genetics, vol. 43, no. 6, pp. 547–553, 2011. View at Publisher · View at Google Scholar
  41. S. A. Brugmann, N. C. Allen, A. W. James, Z. Mekonnen, E. Madan, and J. A. Helms, “A primary cilia-dependent etiology for midline facial disorders,” Human Molecular Genetics, vol. 19, no. 8, pp. 1577–1592, 2010. View at Publisher · View at Google Scholar
  42. J. M. Friedland-Little, A. D. Hoffmann, P. J. Ocbina et al., “A novel murine allele of intraflagellar transport protein 172 causes a syndrome including VACTERL-like features with hydrocephalus,” Human Molecular Genetics, vol. 20, no. 19, pp. 3725–3737, 2011. View at Publisher · View at Google Scholar
  43. S. A. Temtamy and J. D. Miller, “Extending the scope of the VATER association: definition of the VATER syndrome,” The Journal of Pediatrics, vol. 85, no. 3, pp. 345–349, 1974. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Ashe, N. C. Butterfield, L. Town et al., “Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies,” Human Molecular Genetics, vol. 21, no. 8, pp. 1808–1823, 2012. View at Publisher · View at Google Scholar
  45. P. Buxton, M. G. Davey, I. R. Paton et al., “Craniofacial development in the talpid3 chicken mutant,” Differentiation, vol. 72, no. 7, pp. 348–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Chang, E. N. Schock, E. A. O'Hare et al., “The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2,” Development, vol. 141, no. 15, pp. 3003–3012, 2014. View at Publisher · View at Google Scholar
  47. J. E. Lee and J. G. Gleeson, “Cilia in the nervous system: linking cilia function and neurodevelopmental disorders,” Current Opinion in Neurology, vol. 24, no. 2, pp. 98–105, 2011. View at Publisher · View at Google Scholar
  48. B. T. Chiquet, S. H. Blanton, A. Burt et al., “Variation in WNT genes is associated with non-syndromic cleft lip with or without cleft palate,” Human Molecular Genetics, vol. 17, no. 14, pp. 2212–2218, 2008. View at Publisher · View at Google Scholar
  49. L. Song, Y. Li, K. Wang et al., “Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion,” Development, vol. 136, no. 18, pp. 3161–3171, 2009. View at Publisher · View at Google Scholar
  50. Y.-R. Jin, X. H. Han, M. M. Taketo, and J. K. Yoon, “Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development,” Development, vol. 139, no. 10, pp. 1821–1830, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Ferretti, B. Li, R. Zewdu et al., “A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis,” Developmental Cell, vol. 21, no. 4, pp. 627–641, 2011. View at Publisher · View at Google Scholar
  52. A. R. Vieira, “Genetic and environmental factors in human cleft lip and palate,” Frontiers of Oral Biology, vol. 16, pp. 19–31, 2012. View at Publisher · View at Google Scholar
  53. R. J. Lipinski, P. Hammond, S. K. O’Leary-Moore et al., “Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent,” PLoS ONE, vol. 7, no. 8, Article ID e43067, 2012. View at Publisher · View at Google Scholar
  54. S. C. Ahlgren, V. Thakur, and M. Bronner-Fraser, “Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure,” Proceedings of the National Academy of Sciences, vol. 99, no. 16, pp. 10476–10481, 2002. View at Publisher · View at Google Scholar
  55. H. W. Kietzman, J. L. Everson, K. K. Sulik, and R. J. Lipinski, “The teratogenic effects of prenatal ethanol exposure are exacerbated by sonic Hedgehog or Gli2 haploinsufficiency in the mouse,” PLoS ONE, vol. 9, no. 2, Article ID e89448, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Hong and R. S. Krauss, “Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice,” PLoS Genetics, vol. 8, no. 10, Article ID e1002999, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Hong and R. S. Krauss, “Rescue of holoprosencephaly in fetal alcohol-exposed Cdon mutant mice by reduced gene dosage of Ptch1,” PLoS ONE, vol. 8, no. 11, Article ID e79269, 2013. View at Publisher · View at Google Scholar · View at Scopus