Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015 (2015), Article ID 965185, 8 pages
http://dx.doi.org/10.1155/2015/965185
Review Article

Serum/Plasma MicroRNAs as Biomarkers for HBV-Related Hepatocellular Carcinoma in China

1Department of Microbiology, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
2Department of Gastroenterology, First Affiliated Hospital of the Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710032, China
3Department of Medicine, Jinan 2nd People’s Hospital, Jinan, Shandong 250001, China
4Department of Out-Patient, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China

Received 7 July 2014; Revised 21 October 2014; Accepted 21 October 2014

Academic Editor: Chang G. Liu

Copyright © 2015 Wen Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Ca: A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. F. Schafer and M. F. Sorrell, “Hepatocellular carcinoma,” The Lancet, vol. 353, no. 9160, pp. 1253–1257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Qi, J. Wang, H. Katayama, S. Sen, and S. M. Liu, “Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma,” Neoplasma, vol. 60, no. 2, pp. 135–142, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. N. T. Zinkin, F. Grall, K. Bhaskar et al., “Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease,” Clinical Cancer Research, vol. 14, no. 2, pp. 470–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Bruix and J. M. Llovet, “Prognostic prediction and treatment strategy in hepatocellular carcinoma,” Hepatology, vol. 35, no. 3, pp. 519–524, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Dalmay, “MicroRNAs and cancer,” Journal of Internal Medicine, vol. 263, no. 4, pp. 366–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-Z. Chen, L. Li, H. F. Lodish, and D. P. Bartel, “MicroRNAs modulate hematopoietic lineage differentiation,” Science, vol. 303, no. 5654, pp. 83–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Chen, H. Hu, X. Guan et al., “CpG island methylation status of miRNAs in esophageal squamous cell carcinoma,” International Journal of Cancer, vol. 130, no. 7, pp. 1607–1613, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Libri, P. Miesen, R. P. van Rij, and A. H. Buck, “Regulation of microRNA biogenesis and turnover by animals and their viruses,” Cellular and Molecular Life Sciences, vol. 70, no. 19, pp. 3525–3544, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Gao, C. C.-L. Wong, E. K.-K. Tung, J. M.-F. Lee, C.-M. Wong, and I. O.-L. Ng, “Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis,” Journal of Hepatology, vol. 54, no. 6, pp. 1177–1184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Pineau, S. Volinia, K. McJunkin et al., “miR-221 overexpression contributes to liver tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 264–269, 2010. View at Publisher · View at Google Scholar
  14. H. Kutay, S. Bai, J. Datta et al., “Downregulation of miR-122 in the rodent and human hepatocellular carcinomas,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 671–678, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Connolly, M. Melegari, P. Landgraf et al., “Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype,” The American Journal of Pathology, vol. 173, no. 3, pp. 856–864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zheng, P. Dong, S. Gao, N. Wang, and F. Yu, “High expression of serum miR-17-5p associated with poor prognosis in patients with hepatocellular carcinoma,” Hepato-Gastroenterology, vol. 60, no. 123, pp. 549–552, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Wei, C. Tan, C. Tang et al., “Epigenetic repression of miR-132 expression by the hepatitis B virus x protein in hepatitis B virus-related hepatocellular carcinoma,” Cellular Signalling, vol. 25, no. 5, pp. 1037–1043, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. C.-Y. Lu, K.-Y. Lin, M.-T. Tien, C.-T. Wu, Y.-H. Uen, and T.-L. Tseng, “Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma,” Genes Chromosomes and Cancer, vol. 52, no. 7, pp. 636–643, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Liu, T.-J. Yao, W. Wang et al., “Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study,” BMJ Open, vol. 2, no. 2, Article ID e000825, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Li, Z. Guo, J. Wang, Y. Mao, and Q. Gao, “Serum miR-18a: a potential marker for hepatitis B virus-related hepatocellular carcinoma screening,” Digestive Diseases and Sciences, vol. 57, no. 11, pp. 2910–2916, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Zhou, L. Yu, X. Gao et al., “Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma,” Journal of Clinical Oncology, vol. 29, no. 36, pp. 4781–4788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Xu, C. Wu, X. Che et al., “Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis,” Molecular Carcinogenesis, vol. 50, no. 2, pp. 136–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Qi, S.-Q. Cheng, H. Wang, N. Li, Y.-F. Chen, and C.-F. Gao, “Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection,” PLoS ONE, vol. 6, no. 12, Article ID e28486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Li, Y. Wang, W. Yu, J. Chen, and J. Luo, “Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance,” Biochemical and Biophysical Research Communications, vol. 406, no. 1, pp. 70–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Gui, Y. Tian, X. Wen et al., “Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies,” Clinical Science, vol. 120, no. 5, pp. 183–193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. M. Li, Z. B. Hu, Z. X. Zhou et al., “Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma,” Cancer Research, vol. 70, no. 23, pp. 9798–9807, 2010. View at Publisher · View at Google Scholar
  28. J. Chang, J.-T. Guo, D. Jiang, H. Guo, J. M. Taylor, and T. M. Block, “Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells,” Journal of Virology, vol. 82, no. 16, pp. 8215–8223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Gramantieri, M. Ferracin, F. Fornari et al., “Cyclin G1 is a target of miR-122a, a MicroRNA frequently down-regulated in human hepatocellular carcinoma,” Cancer Research, vol. 67, no. 13, pp. 6092–6099, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Wang, S. Zhang, B. Marzolf et al., “Circulating microRNAs, potential biomarkers for drug-induced liver injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4402–4407, 2009. View at Publisher · View at Google Scholar
  31. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar
  32. T. Fukao, Y. Fukuda, K. Kiga et al., “An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling,” Cell, vol. 129, no. 3, pp. 617–631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. B. Johnnidis, M. H. Harris, R. T. Wheeler et al., “Regulation of progenitor cell proliferation and granulocyte function by microRNA-223,” Nature, vol. 451, no. 7182, pp. 1125–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. W. Wong, R. W. Lung, P. T. Law et al., “MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1,” Gastroenterology, vol. 135, no. 1, pp. 257–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. C.-H. Yu, C.-F. Xu, and Y.-M. Li, “Association of microRNA-223 expression with hepatic ischemia/reperfusion injury in mice,” Digestive Diseases and Sciences, vol. 54, no. 11, pp. 2362–2366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. V. Iorio, M. Ferracin, C.-G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Markou, E. G. Tsaroucha, L. Kaklamanis, M. Fotinou, V. Georgoulias, and E. S. Lianidou, “Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR,” Clinical Chemistry, vol. 54, no. 10, pp. 1696–1704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. J. Schetter, S. Y. Leung, J. J. Sohn et al., “MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma,” The Journal of the American Medical Association, vol. 299, no. 4, pp. 425–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Jiang, Y. Gusev, I. Aderca et al., “Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival,” Clinical Cancer Research, vol. 14, no. 2, pp. 419–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Bonci, V. Coppola, M. Musumeci et al., “The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities,” Nature Medicine, vol. 14, no. 11, pp. 1271–1277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Bottoni, D. Piccin, F. Tagliati, A. Luchin, M. C. Zatelli, and E. C. D. Uberti, “miR-15a and miR-16-1 down-regulation in pituitary adenomas,” Journal of Cellular Physiology, vol. 204, no. 1, pp. 280–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. R. I. Aqeilan, G. A. Calin, and C. M. Croce, “miR-15a and miR-16-1 in cancer: discovery, function and future perspectives,” Cell Death and Differentiation, vol. 17, no. 2, pp. 215–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C.-J. Guo, Q. Pan, B. Jiang, G.-Y. Chen, and D.-G. Li, “Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells,” Apoptosis, vol. 14, no. 11, pp. 1331–1340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Z. Qu, K. Zhang, H. Li, N. H. Afdhal, and M. Albitar, “Circulating microRNAs as biomarkers for hepatocellular carcinoma,” Journal of Clinical Gastroenterology, vol. 45, no. 4, pp. 355–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. T. E. Miller, K. Ghoshal, B. Ramaswamy et al., “MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 29897–29903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Galardi, N. Mercatelli, E. Giorda et al., “miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1,” The Journal of Biological Chemistry, vol. 282, no. 32, pp. 23716–23724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. H. He, K. Jazdzewski, W. Li et al., “The role of microRNA genes in papillary thyroid carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19075–19080, 2005. View at Google Scholar
  49. C. Le Sage, R. Nagel, D. A. Egan et al., “Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation,” The EMBO Journal, vol. 26, no. 15, pp. 3699–3708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. M. Luk, J. Burchard, C. Zhang et al., “DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival,” The Journal of Biological Chemistry, vol. 286, no. 35, pp. 30706–30713, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Katada, H. Ishiguro, Y. Kuwabara et al., “MicroRNA expression profile in undifferentiated gastric cancer,” International Journal of Oncology, vol. 34, no. 2, pp. 537–542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. W. Huang, J. C. Liu, D. E. Deatherage et al., “Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer,” Cancer Research, vol. 69, no. 23, pp. 9038–9046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Bandres, X. Agirre, N. Bitarte et al., “Epigenetic regulation of microRNA expression in colorectal cancer,” International Journal of Cancer, vol. 125, no. 11, pp. 2737–2743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. G.-K. Wang, J.-Q. Zhu, J.-T. Zhang et al., “Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans,” European Heart Journal, vol. 31, no. 6, pp. 659–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Takakura, N. Mitsutake, M. Nakashima et al., “Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells,” Cancer Science, vol. 99, no. 6, pp. 1147–1154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Volinia, G. A. Calin, C.-G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. M. J. Bueno, M. G. De Cedrón, U. Laresgoiti, J. Fernández-Piqueras, A. M. Zubiaga, and M. Malumbres, “Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling,” Molecular and Cellular Biology, vol. 30, no. 12, pp. 2983–2995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. G. E. Chung, J.-H. Yoon, S. J. Myung et al., “High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma,” Oncology Reports, vol. 23, no. 1, pp. 113–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Ma, K. H. Tang, Y. P. Chan et al., “MiR-130b promotes CD133+ liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1,” Cell Stem Cell, vol. 7, no. 6, pp. 694–707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. K. W. Lai, K. X. Koh, M. Loh et al., “MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer,” European Journal of Cancer, vol. 46, no. 8, pp. 1456–1463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Giordano and A. Columbano, “MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?” Hepatology, vol. 57, no. 2, pp. 840–847, 2013. View at Publisher · View at Google Scholar · View at Scopus