Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 986736, 17 pages
http://dx.doi.org/10.1155/2015/986736
Research Article

Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques

1Applied Computing Research Group, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
2The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ, UK

Received 21 July 2014; Revised 9 December 2014; Accepted 23 December 2014

Academic Editor: Stefan Rampp

Copyright © 2015 Paul Fergus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The epilepsies are a heterogeneous group of neurological disorders and syndromes characterised by recurrent, involuntary, paroxysmal seizure activity, which is often associated with a clinicoelectrical correlate on the electroencephalogram. The diagnosis of epilepsy is usually made by a neurologist but can be difficult to be made in the early stages. Supporting paraclinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and investigate treatment earlier. However, electroencephalogram capture and interpretation are time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity may be a solution. In this paper, we present a supervised machine learning approach that classifies seizure and nonseizure records using an open dataset containing 342 records. Our results show an improvement on existing studies by as much as 10% in most cases with a sensitivity of 93%, specificity of 94%, and area under the curve of 98% with a 6% global error using a k-class nearest neighbour classifier. We propose that such an approach could have clinical applications in the investigation of patients with suspected seizure disorders.