Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 1363902, 10 pages
http://dx.doi.org/10.1155/2016/1363902
Research Article

Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells’ Survival and Proliferation In Vivo

1Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
2Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China

Received 26 November 2015; Revised 19 January 2016; Accepted 16 February 2016

Academic Editor: Magali Cucchiarini

Copyright © 2016 Hongyu Qiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. W. Yancy, M. Jessup, B. Bozkurt et al., “2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines,” Journal of the American College of Cardiology, vol. 62, no. 16, pp. e147–e239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. J. O. Mudd and D. A. Kass, “Tackling heart failure in the twenty-first century,” Nature, vol. 451, no. 7181, pp. 919–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Kubo, N. Jaleel, A. Kumarapeli et al., “Increased cardiac myocyte progenitors in failing human hearts,” Circulation, vol. 118, no. 6, pp. 649–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. E. Strauer, M. Brehm, T. Zeus et al., “Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction,” Deutsche Medizinische Wochenschrift, vol. 126, no. 34-35, pp. 932–938, 2001. View at Google Scholar
  5. S. Yamada, T. J. Nelson, R. J. Crespo-Diaz et al., “Embryonic stem cell therapy of heart failure in genetic cardiomyopathy,” Stem Cells, vol. 26, no. 10, pp. 2644–2653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. Ramkisoensing, D. A. Pijnappels, S. F. A. Askar et al., “Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts,” PLoS ONE, vol. 6, no. 9, Article ID e24164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Williams and J. M. Hare, “Mesenchymal stem cells: Biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease,” Circulation Research, vol. 109, no. 8, pp. 923–940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Wang, X. Qu, and R. C. Zhao, “Mesenchymal stem cells hold promise for regenerative medicine,” Frontiers of Medicine in China, vol. 5, no. 4, pp. 372–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Menasché, “Towards the second generation of skeletal myoblasts?” Cardiovascular Research, vol. 79, no. 3, pp. 355–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. R. Makkar, R. R. Smith, K. Cheng et al., “Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial,” The Lancet, vol. 379, no. 9819, pp. 895–904, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Bollini, N. Smart, and P. R. Riley, “Resident cardiac progenitor cells: at the heart of regeneration,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 2, pp. 296–303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Bolli, A. R. Chugh, D. D'Amario et al., “Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial,” The Lancet, vol. 378, no. 9806, pp. 1847–1857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Rizzi, E. Di Pasquale, P. Portararo et al., “Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation,” Cell Death and Differentiation, vol. 19, no. 7, pp. 1162–1174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Le Blanc and O. Ringdén, “Immunomodulation by mesenchymal stem cells and clinical experience,” Journal of Internal Medicine, vol. 262, no. 5, pp. 509–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J.-G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” STEM CELLS, vol. 20, no. 6, pp. 530–541, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Laflamme and C. E. Murry, “Heart regeneration,” Nature, vol. 473, no. 7347, pp. 326–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Y. Sheikh, B. C. Huber, K. H. Narsinh et al., “In vivo functional and transcriptional profiling of bone marrow stem cells after transplantation into ischemic myocardium,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 1, pp. 92–102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Oskowitz, H. McFerrin, M. Gutschow, M. L. Carter, and R. Pochampally, “Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic,” Stem Cell Research, vol. 6, no. 3, pp. 215–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Song, M.-J. Cha, B.-W. Song et al., “Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex,” Stem Cells, vol. 28, no. 3, pp. 555–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. J. Huat, A. A. Khan, S. Pati, Z. Mustafa, J. M. Abdullah, and H. Jaafar, “IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells,” BMC Neuroscience, vol. 15, article 91, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Frisch, J. K. Venkatesan, A. Rey-Rico, G. Schmitt, H. Madry, and M. Cucchiarini, “Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells,” Stem Cell Research and Therapy, vol. 5, no. 4, article 103, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Colenci, L. R. da Silva Assunção, S. R. Mogami Bomfim, M. De Assis Golim, E. Deffune, and S. H. Penha Oliveira, “Bone marrow mesenchymal stem cells stimulated by bFGF up-regulated protein expression in comparison with periodontal fibroblasts in vitro,” Archives of Oral Biology, vol. 59, no. 3, pp. 268–276, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. A. D. Berendsen and B. R. Olsen, “How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells,” Journal of Histochemistry and Cytochemistry, vol. 62, no. 2, pp. 103–108, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Arcopinto, J. Isgaard, A. M. Marra et al., “IGF-1 predicts survival in chronic heart failure. Insights from the T.O.S.CA. (Trattamento Ormonale Nello Scompenso CArdiaco) registry,” International Journal of Cardiology, vol. 176, no. 3, pp. 1006–1008, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Rengo, A. Cannavo, D. Liccardo et al., “Vascular endothelial growth factor blockade prevents the beneficial effects of β-blocker therapy on cardiac function, angiogenesis, and remodeling in heart failure,” Circulation: Heart Failure, vol. 6, no. 6, pp. 1259–1267, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Akhyari, H. Kamiya, A. Haverich, M. Karck, and A. Lichtenberg, “Myocardial tissue engineering: the extracellular matrix,” European Journal of Cardio-Thoracic Surgery, vol. 34, no. 2, pp. 229–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. W. H. Zimmermann, C. Fink, D. Kralisch, U. Remmers, J. Weil, and T. Eschenhagen, “Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes,” Biotechnology and Bioengineering, vol. 68, no. 1, pp. 106–114, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. B. Carvalho and A. C. de Carvalho, “Heart regeneration: past, present and future,” World Journal of Cardiology, vol. 2, no. 5, pp. 107–111, 2010. View at Publisher · View at Google Scholar
  31. R. Passier, L. W. van Laake, and C. L. Mummery, “Stem-cell-based therapy and lessons from the heart,” Nature, vol. 453, no. 7193, pp. 322–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Murohara, S. Shintani, and K. Kondo, “Autologous adipose-derived regenerative cells for therapeutic angiogenesis,” Current Pharmaceutical Design, vol. 15, no. 24, pp. 2784–2790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Fan, D. Sun, J. Liu et al., “Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study,” PLoS ONE, vol. 7, no. 9, Article ID e45621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Carmeliet, V. Ferreira, G. Breier et al., “Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele,” Nature, vol. 380, no. 6573, pp. 435–439, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Ferrara, “Vascular endothelial growth factor,” European Journal of Cancer Part A, vol. 32, no. 14, pp. 2413–2422, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Chen, X. Shi, C. Sun et al., “VEGF-Mediated Proliferation of Human Adipose Tissue-Derived Stem Cells,” PLoS ONE, vol. 8, no. 10, Article ID e73673, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Efimenko, E. Starostina, N. Kalinina, and A. Stolzing, “Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning,” Journal of Translational Medicine, vol. 9, article no. 10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. J. Kim, H. K. Kim, H. K. Cho, Y. C. Bae, K. T. Suh, and J. S. Jung, “Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia,” Cellular Physiology and Biochemistry, vol. 20, no. 6, pp. 867–876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Basilico and D. Moscatelli, “The FGF family of growth factors and oncogenes,” Advances in Cancer Research, vol. 59, pp. 115–165, 1992. View at Publisher · View at Google Scholar · View at Scopus
  40. J. E. Moreau, J. Chen, D. S. Bramono et al., “Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro,” Journal of Orthopaedic Research, vol. 23, no. 1, pp. 164–174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Zhang, C. Zhao, B. Liu et al., “Inositol pyrophosphates mediate the effects of aging on bone marrow mesenchymal stem cells by inhibiting Akt signaling,” Stem Cell Research and Therapy, vol. 5, no. 2, article 33, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Belfiore, F. Frasca, G. Pandini, L. Sciacca, and R. Vigneri, “Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease,” Endocrine Reviews, vol. 30, no. 6, pp. 586–623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Giustina, G. Mazziotti, and E. Canalis, “Growth hormone, insulin-like growth factors, and the skeleton,” Endocrine Reviews, vol. 29, no. 5, pp. 535–559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. P. E. de Almeida, J. R. M. van Rappard, and J. C. Wu, “In vivo bioluminescence for tracking cell fate and function,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 301, no. 3, pp. H663–H671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Zhang, S. Li, M. Cui et al., “Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways,” Basic Research in Cardiology, vol. 108, no. 2, article 333, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Sun, P. Huang, G. Tong et al., “VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle,” Nanoscale, vol. 5, no. 15, pp. 6857–6866, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Cao, D. Sun, C. Li et al., “Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up,” European Heart Journal, vol. 30, no. 16, pp. 1986–1994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Cao, Z. Li, A. Lee et al., “Noninvasive de novo imaging of human embryonic stem cell-derived teratoma formation,” Cancer Research, vol. 69, no. 7, pp. 2709–2713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Cao, R. A. Wagner, K. D. Wilson et al., “Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes,” PLoS ONE, vol. 3, no. 10, Article ID e3474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Cao, S. Lin, X. Xie et al., “In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery,” Circulation, vol. 113, no. 7, pp. 1005–1014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Kumar, V. Rajendran, R. Sethumadhavan, and R. Purohit, “AKT kinase pathway: a leading target in cancer research,” The Scientific World Journal, vol. 2013, Article ID 756134, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus