Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 1403984, 14 pages
http://dx.doi.org/10.1155/2016/1403984
Research Article

TRIM25 Identification in the Chinese Goose: Gene Structure, Tissue Expression Profiles, and Antiviral Immune Responses In Vivo and In Vitro

1Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
2Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
3Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China

Received 12 July 2016; Revised 21 September 2016; Accepted 9 October 2016

Academic Editor: Marcelo A. Soares

Copyright © 2016 Yunan Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Nisole, J. P. Stoye, and A. Saïb, “TRIM family proteins: retroviral restriction and antiviral defence,” Nature Reviews Microbiology, vol. 3, no. 10, pp. 799–808, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Rajsbaum, A. García-Sastre, and G. A. Versteeg, “TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity,” Journal of Molecular Biology, vol. 426, no. 6, pp. 1265–1284, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Meroni and G. Diez-Roux, “TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases,” BioEssays, vol. 27, no. 11, pp. 1147–1157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y.-M. Loo and M. Gale Jr., “Immune signaling by RIG-I-like receptors,” Immunity, vol. 34, no. 5, pp. 680–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. X.-W. Wang and J.-X. Wang, “Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections,” Fish & Shellfish Immunology, vol. 34, no. 4, pp. 981–989, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Komander and M. Rape, “The ubiquitin code,” Annual Review of Biochemistry, vol. 81, no. 7, pp. 203–229, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Chen and Z. J. Chen, “Regulation of NF-κB by ubiquitination,” Current Opinion in Immunology, vol. 25, no. 1, pp. 4–12, 2013. View at Publisher · View at Google Scholar
  8. W. Zeng, L. Sun, X. Jiang et al., “Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity,” Cell, vol. 141, no. 2, pp. 315–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K.-S. Inn, M. U. Gack, F. Tokunaga et al., “Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction,” Molecular Cell, vol. 41, no. 3, pp. 354–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Miranzo-Navarro and K. E. Magor, “Activation of duck RIG-I by TRIM25 is independent of anchored ubiquitin,” PLoS ONE, vol. 9, no. 1, Article ID e86968, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Zhang, T. Hatziioannou, D. Perez-Caballero, D. Derse, and P. D. Bieniasz, “Antiretroviral potential of human tripartite motif-5 and related proteins,” Virology, vol. 353, no. 2, pp. 396–409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kawai and S. Akira, “Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins,” EMBO Molecular Medicine, vol. 3, no. 9, pp. 513–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. D. Uchil, A. Hinz, S. Siegel et al., “TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity,” Journal of Virology, vol. 87, no. 1, pp. 257–272, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Allouch, C. Di Primio, E. Alpi et al., “The TRIM family protein KAP1 inhibits HIV-1 integration,” Cell Host and Microbe, vol. 9, no. 6, pp. 484–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K.-I. Arimoto, K. Funami, Y. Saeki et al., “Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 36, pp. 15856–15861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Stremlau, C. M. Owens, M. J. Perron, M. Kiessling, P. Autissier, and J. Sodroski, “The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys,” Nature, vol. 427, no. 6977, pp. 848–853, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Rajsbaum, J. P. Stoye, and A. O'Garra, “Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells,” European Journal of Immunology, vol. 38, no. 3, pp. 619–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Koba, C. Kokaji, G. Fujisaki, K. Oguma, and H. Sentsui, “Characterization of feline TRIM genes: molecular cloning, expression in tissues, and response to type I interferon,” Veterinary Immunology and Immunopathology, vol. 153, no. 1-2, pp. 91–98, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Miranzo-Navarro and K. E. Magor, “Activation of duck RIG-I by TRIM25 is independent of anchored ubiquitin,” PLoS ONE, vol. 9, no. 1, Article ID e86968, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. Z.-Q. Feng, Y. Cheng, H.-L. Yang, Q. Zhu, D. Yu, and Y.-P. Liu, “Molecular characterization, tissue distribution and expression analysis of TRIM25 in Gallus gallus domesticus,” Gene, vol. 561, no. 1, pp. 138–147, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. K. E. Magor, D. Miranzo Navarro, M. R. W. Barber et al., “Defense genes missing from the flight division,” Developmental and Comparative Immunology, vol. 41, no. 3, pp. 377–388, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Koba, K. Oguma, and H. Sentsui, “Overexpression of feline tripartite motif-containing 25 interferes with the late stage of feline leukemia virus replication,” Virus Research, vol. 204, pp. 88–94, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. G. A. Versteeg, S. Benke, A. García-Sastre, and R. Rajsbaum, “InTRIMsic immunity: positive and negative regulation of immune signaling by tripartite motif proteins,” Cytokine and Growth Factor Reviews, vol. 25, no. 5, pp. 563–576, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Kowalinski, T. Lunardi, A. A. McCarthy et al., “Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA,” Cell, vol. 147, no. 2, pp. 423–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Jiang, A. Ramanathan, M. T. Miller et al., “Structural basis of RNA recogination and activation by innate immune receptor RIG-I,” Nature, vol. 479, no. 7373, pp. 423–427, 2011. View at Publisher · View at Google Scholar
  26. M. U. Gack, Y. C. Shin, C.-H. Joo et al., “TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity,” Nature, vol. 446, no. 7138, pp. 916–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Hou, L. Sun, H. Zheng, B. Skaug, Q. X. Jiang, and Z. J. Chen, “MAVs forms functional prion-like aggregates to activate and propagate antivial innate immune response,” Cell, vol. 146, no. 3, pp. 448–461, 2011. View at Google Scholar
  28. J. M. Roach, L. Racioppi, C. D. Jones, and A. M. Masci, “Phylogeny of Toll-like receptor signaling: adapting the innate response,” PLoS ONE, vol. 8, no. 1, Article ID e54156, p. 65, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. K. M. Short and T. C. Cox, “Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding,” The Journal of Biological Chemistry, vol. 281, no. 13, pp. 8970–8980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Joazeiro and A. M. Weissman, “RING finger proteins: mediators of ubiquitin ligase activity,” Cell, vol. 12, no. 5, pp. 5199–5552, 2000. View at Google Scholar
  31. G. Meronin and G. Diez-Roux, “TRIM/RBCC, a novel class of ‘single protein RING Finger’ E3 ubiquitin ligases,” BioEssays, vol. 27, no. 11, pp. 1147–1157, 2005. View at Google Scholar
  32. T. Pertel, S. Hausmann, D. Morger et al., “TRIM5 is an innate immune sensor for the retrovirus capsid lattice,” Nature, vol. 472, no. 7343, pp. 361–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Massiah, B. N. Simmons, K. M. Short, and T. C. Cox, “Solution structure of the RBCC/TRIM B-box domain of human MID1: B-box with a RING,” Journal of Molecular Biology, vol. 358, no. 2, pp. 352–345, 2006. View at Google Scholar
  34. M. Sardiello, S. Cairo, B. Fontanella, A. Ballabio, and G. I. Meroni, “Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties,” BMC Evolutionary Biology, vol. 8, no. 1, article 225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Reymond, G. Meroni, A. Fantozzi et al., “The tripartite motif family identifies cell compartments,” EMBO Journal, vol. 20, no. 9, pp. 2140–2151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. L. M. Napolitano and G. Meroni, “TRIM family: pleiotropy and diversification through homomultimer and heteromultimer formation,” IUBMB Life, vol. 64, no. 1, pp. 64–71, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Bell, A. Malyukova, J. K. Holien et al., “TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members,” PLoS ONE, vol. 7, no. 5, Article ID e37470, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Qi, B. Yan, S. Chen et al., “CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection,” Immunobiology, vol. 221, no. 3, pp. 454–461, 2016. View at Publisher · View at Google Scholar
  39. H. Kato, O. Takeuchi, S. Sato et al., “Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses,” Nature, vol. 441, no. 7809, pp. 101–105, 2006. View at Publisher · View at Google Scholar
  40. H. Schwarz, K. Schneider, A. Ohnemus et al., “Chicken toll-like receptor 3 recognizes its cognate ligand when ectopically expressed in human cells,” Journal of Interferon and Cytokine Research, vol. 27, no. 2, pp. 97–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Carthagena, A. Bergamaschi, J. M. Luna et al., “Human TRIM gene expression in response to interferons,” PLoS ONE, vol. 4, no. 3, article e4894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Ozato, D.-M. Shin, T.-H. Chang, and H. C. Morse, “TRIM family proteins and their emerging roles in innate immunity,” Nature Reviews Immunology, vol. 8, no. 11, pp. 849–860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Xing, C. J. Cardona, J. Li, N. Dao, T. Tran, and J. Andrada, “Modulation of the immune responses in chickens by low-pathogenicity avian influenza virus H9N2,” Journal of General Virology, vol. 89, no. 5, pp. 1288–1299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. K. B. Ku, E. H. Park, J. Yum et al., “Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets,” Virology, vol. 450-451, pp. 316–323, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Zhou, S. Chen, B. Yan et al., “LPAIV H9N2 drives the differential expression of goose interferons and proinflammatory cytokines in both in vitro and in vivo studies,” Frontiers in Microbiology, vol. 17, no. 7, article 166, 2016. View at Publisher · View at Google Scholar
  46. M. Zeng, S. Chen, M. Wang et al., “Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 47, pp. 32–40, 2016. View at Publisher · View at Google Scholar
  47. J. Talon, C. M. Horvath, R. Polley et al., “Activation of interferon regulatory factor 3 is inhibited by the influenza a virus NS1 protein,” Journal of Virology, vol. 74, no. 17, pp. 7989–7996, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Ludwig, X. Wang, C. Ehrhardt et al., “The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors,” Journal of Virology, vol. 76, no. 21, pp. 11166–11171, 2002. View at Publisher · View at Google Scholar · View at Scopus