Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 1830262, 13 pages
http://dx.doi.org/10.1155/2016/1830262
Review Article

Plant Responses to High Frequency Electromagnetic Fields

1Université d’Angers, Campus du Végétal, UMR 1345 IRHS, CS 60057, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France
2Department of Plant and Microbial Biology, North Carolina State University, P.O. Box 7612, Raleigh, NC 27695, USA
3Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France
4Institut Pascal, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
5CNRS, UMR 6602, 63171 Aubière, France

Received 25 November 2015; Accepted 17 January 2016

Academic Editor: Yan-Bo Hu

Copyright © 2016 Alain Vian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Balmori, “Electromagnetic pollution from phone masts. Effects on wildlife,” Pathophysiology, vol. 16, no. 2-3, pp. 191–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Kleinlogel, T. Dierks, T. Koenig, H. Lehmann, A. Minder, and R. Berz, “Effects of weak mobile phone—electromagnetic fields (GSM, UMTS) on well-being and resting EEG,” Bioelectromagnetics, vol. 29, no. 6, pp. 479–487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Vian, C. Faure, S. Girard et al., “Plants respond to GSM-like radiations,” Plant Signaling & Behavior, vol. 2, no. 6, pp. 522–524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Tkalec, K. Malarić, and B. Pevalek-Kozlina, “Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L.,” Science of the Total Environment, vol. 388, no. 1–3, pp. 78–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Roux, A. Vian, S. Girard et al., “Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants,” Physiologia Plantarum, vol. 128, no. 2, pp. 283–288, 2006. View at Google Scholar
  6. É. Beaubois, S. Girard, S. Lallechere et al., “Intercellular communication in plants: evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato,” Plant, Cell and Environment, vol. 30, no. 7, pp. 834–844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. P. Singh, V. P. Sharma, D. R. Batish, and R. K. Kohli, “Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes,” Environmental Monitoring and Assessment, vol. 184, no. 4, pp. 1813–1821, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Vian, D. Roux, S. Girard et al., “Microwave irradiation affects gene expression in plants,” Plant Signaling and Behavior, vol. 1, no. 2, pp. 67–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. N. Halgamuge, S. K. Yak, and J. L. Eberhardt, “Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station,” Bioelectromagnetics, vol. 36, no. 2, pp. 87–95, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Roux, A. Vian, S. Girard et al., “High frequency (900 MHz) low amplitude (5 V m−1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato,” Planta, vol. 227, no. 4, pp. 883–891, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, NY, USA, 1941.
  12. V. P. Sharma, H. P. Singh, R. K. Kohli, and D. R. Batish, “Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress,” Science of the Total Environment, vol. 407, no. 21, pp. 5543–5547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Afzal and S. Mansoor, “Effect of mobile phone radiations on morphological and biochemical parameters of Mung bean (Vigna radiata) and wheat (Triticum aestivum) seedlings,” Asian Journal of Agricultural Sciences, vol. 4, no. 2, pp. 149–152, 2012. View at Google Scholar
  14. M. D. H. J. Senavirathna and T. Asaeda, “Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum,” Biologia Plantarum, vol. 58, no. 2, pp. 355–362, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Surducan, V. Surducan, A. Butiuc-Keul, and A. Halgamagy, “Microwaves irradiation experiments on biological samples,” Studia Univesitas Babes-Bolyai Biologia, vol. 58, no. 1, pp. 83–98, 2013. View at Google Scholar
  16. P. Jinapang, P. Prakob, P. Wongwattananard, N. E. Islam, and P. Kirawanich, “Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields,” Bioelectromagnetics, vol. 31, no. 7, pp. 519–527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Crawford, “Generation of standard EM fields using TEM transmission cells,” IEEE Transactions on Electromagnetic Compatibility, vol. 16, no. 4, pp. 189–195, 1974. View at Google Scholar · View at Scopus
  18. M. Tkalec, K. Malarić, and B. Pevalek-Kozlina, “Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity,” Bioelectromagnetics, vol. 26, no. 3, pp. 185–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Liu, F. Garber, and S. F. Cleary, “Investigation of the effects of continuous-wave, pulse- and amplitude-modulated microwaves on single excitable cells of chara corallina,” Bioelectromagnetics, vol. 3, no. 2, pp. 203–212, 1982. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Radzevičius, S. Sakalauskiene, M. Dagys et al., “The effect of strong microwave electric field radiation on: (1) vegetable seed germination and seedling growth rate,” Zemdirbyste, vol. 100, no. 2, pp. 179–184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Lalléchère, S. Girard, D. Roux, P. Bonnet, F. Paladian, and A. Vian, “Mode Stirred Reverberation Chamber (MSRC): a large and efficient tool to lead high frequency bioelectromagnetic in vitro experimentation,” Progress in Electromagnetics Research B, vol. 26, pp. 257–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Cogalniceanu, M. Radu, D. Fologea, and A. Brezeanu, “Short high-voltage pulses promote adventitious shoot differentiation from intact tobacco seedlings,” Electro- and Magnetobiology, vol. 19, no. 2, pp. 177–187, 2000. View at Publisher · View at Google Scholar
  23. K. Dymek, P. Dejmek, V. Panarese et al., “Effect of pulsed electric field on the germination of barley seeds,” LWT—Food Science and Technology, vol. 47, no. 1, pp. 161–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Cadilhon, L. Pécastaing, S. Vauchamp, J. Andrieu, V. Bertrand, and M. Lalande, “Improvement of an ultra-wideband antenna for high-power transient applications,” IET Microwaves, Antennas and Propagation, vol. 3, no. 7, pp. 1102–1109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Răcuciu, S. Miclăuş, and D. E. Creangă, “Non-thermal, continuous and modulated rf field effects on vegetal tissue developed from exposed seeds,” in Electromagnetic Field, Health and Environment, A. Krawczyk, R. Kubacki, S. Wiak, and C. Lemos Antunes, Eds., vol. 29 of Studies in Applied Electromagnetics and Mechanics, pp. 142–148, IOS Press, Amsterdam, The Netherlands, 2008. View at Google Scholar
  26. D. B. Jones, G. P. Bolwell, and G. J. Gilliatt, “Amplification, by pulsed electromagnetic fields, of plant growth regulator induced phenylalanine ammonia-lyase during differentiation in suspension cultured plant cells,” Electromagnetic Biology and Medicine, vol. 5, no. 1, pp. 1–12, 1986. View at Publisher · View at Google Scholar · View at Scopus
  27. V. P. Sharma, H. P. Singh, D. R. Batish, and R. K. Kohli, “Cell phone radiations affect early growth of vigna radiate (Mung Bean) through biochemical alterations,” Zeitschrift für Naturforschung C, vol. 65, no. 1-2, pp. 66–72, 2010. View at Google Scholar · View at Scopus
  28. A. Kumar, H. P. Singh, D. R. Batish, S. Kaur, and R. K. Kohli, “EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism,” Protoplasma, pp. 1–7, 2015. View at Publisher · View at Google Scholar
  29. M. Kouzmanova, M. Dimitrova, D. Dragolova, G. Atanasova, and N. Atanasov, “Alterations in enzyme activities in leaves after exposure of Plectranthus Sp. plants to 900 MHZ electromagnetic field,” Biotechnology & Biotechnological Equipment, vol. 23, supplement 1, pp. 611–615, 2009. View at Publisher · View at Google Scholar
  30. S. Radic, P. Cvjetko, K. Malaric, M. Tkalec, and B. Pevalek-Kozlina, “Radio frequency electromagnetic field (900 MHz) induces oxidative damage to DNA and biomembrane in tobacco shoot cells (Nicotiana tabacum),” in Proceedings of the IEEE/MTT-S International Microwave, pp. 2213–2216, IEEE, Honolulu, Hawaii, USA, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y.-P. Chen, J.-F. Jia, and Y.-J. Wang, “Weak microwave can enhance tolerance of wheat seedlings to salt stress,” Journal of Plant Growth Regulation, vol. 28, no. 4, pp. 381–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. V. P. Sharma, G. Singh, and R. K. Kohli, “Effect of mobile phone EMF on biochemical changes in emerging seedlings of Phaseolus aureus Roxb,” The Ecoscan, vol. 3, no. 3-4, pp. 211–214, 2009. View at Google Scholar
  33. H. Zare, S. Mohsenzadeh, and A. Moradshahi, “Electromagnetic waves from GSM a mobile phone simulator and abiotic stress in Zea mays L,” Journal of Nutrition & Food Sciences, vol. S11, p. 3, 2015. View at Publisher · View at Google Scholar
  34. M.-L. Soran, M. Stan, Ü. Niinemets, and L. Copolovici, “Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants,” Journal of Plant Physiology, vol. 171, no. 15, pp. 1436–1443, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Rammal, F. Jebai, H. Rammal, and W. H. Joumaa, “Effects of long term exposure to RF/MW radiations on the expression of mRNA of stress proteins in Lycopersicon esculentum,” WSEAS Transactions on Biology and Biomedicine, vol. 11, pp. 10–14, 2014. View at Google Scholar
  36. J. C. Engelmann, R. Deeken, T. Müller, G. Nimtz, M. R. G. Roelfsema, and R. Hedrich, “Is gene activity in plant cells affected by UMTS-irradiation? A whole genome approach,” Advances and Applications in Bioinformatics and Chemistry, vol. 1, pp. 71–83, 2008. View at Publisher · View at Google Scholar
  37. A. Scialabba and C. Tamburello, “Microwave effects on germination and growth of radish (Raphanus sativus L.) seedlings,” Acta Botanica Gallica, vol. 149, no. 2, pp. 113–123, 2002. View at Google Scholar · View at Scopus
  38. A. Akbal, Y. Kiran, A. Sahin, D. Turgut-Balik, and H. H. Balik, “Effects of electromagnetic waves emitted by mobile phones on germination, root growth, and root tip cell mitotic division of Lens culinaris Medik,” Polish Journal of Environmental Studies, vol. 21, no. 1, pp. 23–29, 2012. View at Google Scholar · View at Scopus
  39. Y. C. Chen and C. Chen, “Effects of mobile phone radiation on germination and early growth of different bean species,” Polish Journal of Environmental Studies, vol. 23, no. 6, pp. 1949–1958, 2014. View at Publisher · View at Google Scholar
  40. M. Răcuciu, C. Iftode, and S. Miclaus, “Inhibitory effects of low thermal radiofrequency radiation on physiological parameters of Zea mays seedlings growth,” Romanian Journal of Physics, vol. 60, no. 3-4, pp. 603–612, 2015. View at Google Scholar
  41. L. Ragha, S. Mishra, V. Ramachandran, and M. S. Bhatia, “Effects of low-power microwave fields on seed germination and growth rate,” Journal of Electromagnetic Analysis and Applications, vol. 3, no. 5, pp. 165–171, 2011. View at Publisher · View at Google Scholar
  42. S. Sharma and L. Parihar, “Effect of mobile phone radiation on nodule formation in the leguminous plants,” Current World Environment Journal, vol. 9, no. 1, pp. 145–155, 2014. View at Publisher · View at Google Scholar
  43. A. O. Oluwajobi, O. A. Falusi, and N. A. Zubbair, “Flower bud abscission reduced in hibiscus sabdariffa by radiation from GSM mast,” Environment and Pollution, vol. 4, no. 1, pp. 53–57, 2015. View at Publisher · View at Google Scholar
  44. M. Tafforeau, M.-C. Verdus, V. Norris et al., “Plant sensitivity to low intensity 105 GHz electromagnetic radiation,” Bioelectromagnetics, vol. 25, no. 6, pp. 403–407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Grémiaux, S. Girard, V. Guérin et al., “Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in Rosa hybrida,” Journal of Plant Physiology, vol. 190, pp. 44–53, 2016. View at Publisher · View at Google Scholar
  46. V. J. Berdinas-Torres, Exposure's systems and dosimetry of large-scale in vivo studies [Ph.D. thesis], Swiss Federal Institute of Technology, Zürich, Switzerland, 2007.
  47. M. J. Van Wyk, M. Bingle, and F. U. C. Meyer, “Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas,” Bioelectromagnetics, vol. 26, no. 6, pp. 502–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Miclăuş and M. Răcuciu, “A dosimetric study for experimental exposures of vegetal tissues to radiofrequency fields,” in Electromagnetic Field, Health and Environment, A. Krawczyk, R. Kubacki, S. Wiak, and C. Lemos Antunes, Eds., vol. 29 of Studies in Applied Electromagnetics and Mechanics, pp. 133–141, IOS Press, Amsterdam, The Netherlands, 2008. View at Google Scholar
  49. J. León, M. C. Castillo, A. Coego, J. Lozano-Juste, and R. Mir, “Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress,” Journal of Experimental Botany, vol. 65, no. 4, pp. 907–921, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. Y.-P. Chen, J.-F. Jia, and X.-L. Han, “Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings,” Planta, vol. 229, no. 2, pp. 291–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. Z.-B. Qiu, J.-L. Guo, M.-M. Zhang, M.-Y. Lei, and Z.-L. Li, “Nitric oxide acts as a signal molecule in microwave pretreatment induced cadmium tolerance in wheat seedlings,” Acta Physiologiae Plantarum, vol. 35, no. 1, pp. 65–73, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. R. K. Jangid, R. Sharma, Y. Sudarsan, S. Eapen, G. Singh, and A. K. Purohit, “Microwave treatment induced mutations and altered gene expression in Vigna aconitifolia,” Biologia Plantarum, vol. 54, no. 4, pp. 703–706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Vian, C. Henry-Vian, and E. Davies, “Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato,” Plant Physiology, vol. 121, no. 2, pp. 517–524, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. J. A. Teixeira da Silva and J. Dobránszki, “Magnetic fields: how is plant growth and development impacted?” Protoplasma, 2015. View at Publisher · View at Google Scholar
  55. M. D. H. J. Senavirathna, T. Asaeda, B. L. S. Thilakarathne, and H. Kadono, “Nanometer-scale elongation rate fluctuations in the Myriophyllum aquaticum (Parrot feather) stem were altered by radio-frequency electromagnetic radiation,” Plant Signaling and Behavior, vol. 9, no. 4, Article ID e28590, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Ursache, G. Mindru, D. E. Creangă, F. M. Tufescu, and C. Goiceanu, “The effects of high frequency electromagnetic waves on the vegetal,” Romanian Journal of Physics, vol. 5, no. 1-2, pp. 133–145, 2009. View at Google Scholar
  57. E. A. M. Hamada, “Effects of microwave treatment on growth, photosynthetic pigments and some metabolites of wheat,” Biologia Plantarum, vol. 51, no. 2, pp. 343–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. M. D. H. J. Senavirathna, A. Takashi, and Y. Kimura, “Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor),” Electromagnetic Biology and Medicine, vol. 33, no. 4, pp. 327–334, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Shckorbatov, “The main approaches of studying the mechanisms of action of artificial electromagnetic fields on cell,” Journal of Electrical & Electronic Systems, vol. 3, no. 2, 2014. View at Publisher · View at Google Scholar
  60. A. M. Pietak, “Structural evidence for electromagnetic resonance in plant morphogenesis,” BioSystems, vol. 109, no. 3, pp. 367–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Amat, J. Rigau, R. W. Waynant, I. K. Ilev, and J. J. Anders, “The electric field induced by light can explain cellular responses to electromagnetic energy: a hypothesis of mechanism,” Journal of Photochemistry and Photobiology B: Biology, vol. 82, no. 2, pp. 152–160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Qiu, J. Li, Y. Zhang, Z. Bi, and H. Wei, “Microwave pretreatment can enhance tolerance of wheat seedlings to CdCl2 stress,” Ecotoxicology and Environmental Safety, vol. 74, no. 4, pp. 820–825, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. Y.-P. Chen, “Microwave treatment of eight seconds protects cells of Isatis indigotica from enhanced UV-B radiation lesions,” Photochemistry and Photobiology, vol. 82, no. 2, pp. 503–507, 2006. View at Publisher · View at Google Scholar · View at Scopus