Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 1869304, 8 pages
http://dx.doi.org/10.1155/2016/1869304
Review Article

The Role of BRCA2 Mutation Status as Diagnostic, Predictive, and Prognosis Biomarker for Pancreatic Cancer

Translational Oncology Division, Oncohealth Institute, Health Research Institute, University Hospital Fundación Jiménez Díaz-UAM, Madrid, Spain

Received 8 August 2016; Revised 21 November 2016; Accepted 28 November 2016

Academic Editor: Renato Franco

Copyright © 2016 Javier Martinez-Useros and Jesus Garcia-Foncillas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Wooster, S. L. Neuhausen, J. Mangion et al., “Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13,” Science, vol. 265, no. 5181, pp. 2088–2090, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Thull and V. G. Vogel, “Recognition and management of hereditary breast cancer syndromes,” Oncologist, vol. 9, no. 1, pp. 13–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Collins, R. McManus, R. Wooster et al., “Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13,” Oncogene, vol. 10, no. 8, pp. 1673–1675, 1995. View at Google Scholar · View at Scopus
  4. H. T. Lynch, P. Watson, S. Tinley et al., “An update on DNA-based BRCA1/BRCA2 genetic counseling in hereditary breast cancer,” Cancer Genetics and Cytogenetics, vol. 109, no. 2, pp. 91–98, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Bronner, S. M. Baker, P. T. Morrison et al., “Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer,” Nature, vol. 368, no. 6468, pp. 258–261, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. K. A. Foster, P. Harrington, J. Kerr et al., “Somatic and germline mutations of the BRCA2 gene in sporadic ovarian cancer,” Cancer Research, vol. 56, no. 16, pp. 3622–3625, 1996. View at Google Scholar · View at Scopus
  7. S. Chen and G. Parmigiani, “Meta-analysis of BRCA1 and BRCA2 penetrance,” Journal of Clinical Oncology, vol. 25, no. 11, pp. 1329–1333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Ford and D. F. Easton, “The genetics of breast and ovarian cancer,” British Journal of Cancer, vol. 72, no. 4, pp. 805–812, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Schutte, L. T. Da Costa, S. A. Hahn et al., “Identification by representational difference analysis of a homozygous deletion in pancreatic carcinoma that lies within the BRCA2 region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 5950–5954, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Tonin, P. Ghadirian, C. Phelan et al., “A large multisite cancer family is linked to BRCA2,” Journal of Medical Genetics, vol. 32, no. 12, pp. 982–984, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. H. T. Lynch, R. E. Brand, C. A. Deters, T. G. Shaw, and J. F. Lynch, “Hereditary pancreatic cancer,” Pancreatology, vol. 1, no. 5, pp. 466–471, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. A. C. Tersmette, G. M. Petersen, G. J. A. Offerhaus et al., “Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer,” Clinical Cancer Research, vol. 7, no. 3, pp. 738–744, 2001. View at Google Scholar · View at Scopus
  13. D. M. Parkin, E. Laara, and C. S. Muir, “Estimates of the worldwide frequency of sixteen major cancers in 1980,” International Journal of Cancer, vol. 41, no. 2, pp. 184–197, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemiology of pancreatic cancer: an overview,” Nature Reviews Gastroenterology and Hepatology, vol. 6, no. 12, pp. 699–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Bosetti, P. Bertuccio, E. Negri, C. La Vecchia, M. P. Zeegers, and P. Boffetta, “Pancreatic cancer: overview of descriptive epidemiology,” Molecular Carcinogenesis, vol. 51, no. 1, pp. 3–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Larsson, L. Bergkvist, and A. Wolk, “Consumption of sugar and sugar-sweetened foods and the risk of pancreatic cancer in a prospective study,” The American Journal of Clinical Nutrition, vol. 84, no. 5, pp. 1171–1176, 2006. View at Google Scholar · View at Scopus
  17. P. Maisonneuve and A. B. Lowenfels, “Risk factors for pancreatic cancer: a summary review of meta-analytical studies,” International Journal of Epidemiology, vol. 44, no. 1, pp. 186–198, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. T. P. Yeo, “Demographics, epidemiology, and inheritance of pancreatic ductal adenocarcinoma,” Seminars in Oncology, vol. 42, no. 1, pp. 8–18, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. S. C. Larsson and A. Wolk, “Red and processed meat consumption and risk of pancreatic cancer: meta-analysis of prospective studies,” British Journal of Cancer, vol. 106, no. 3, pp. 603–607, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Ghadirian, J. Baillargeon, A. Simard, and C. Perret, “Food habits and pancreatic cancer: a case-control study of the Francophone community in Montreal, Canada,” Cancer Epidemiology Biomarkers and Prevention, vol. 4, no. 8, pp. 895–899, 1995. View at Google Scholar · View at Scopus
  21. A. F. S. Amaral, M. Porta, D. T. Silverman et al., “Pancreatic cancer risk and levels of trace elements,” Gut, vol. 61, no. 11, pp. 1583–1588, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. WHO, WHO Guidelines: Water Quality and Health Strategy 2013–2020, WHO, 2016, http://www.who.int/water_sanitation_health/publications/2013/water_quality_strategy.pdf.
  23. J. Ferlay, E. Steliarova-Foucher, J. Lortet-Tieulent et al., “Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012,” European Journal of Cancer, vol. 49, no. 6, pp. 1374–1403, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Schulte, N. Pandeya, J. Fawcett et al., “Association between family cancer history and risk of pancreatic cancer,” Cancer Epidemiology, vol. 45, pp. 145–150, 2016. View at Publisher · View at Google Scholar
  25. J. P. Evans, W. Burke, R. Chen et al., “Familial pancreatic adenocarcinoma: association with diabetes and early molecular diagnosis,” Journal of Medical Genetics, vol. 32, no. 5, pp. 330–335, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Wagner, C. Redaelli, M. Lietz, C. A. Seiler, H. Friess, and M. W. Büchler, “Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma,” British Journal of Surgery, vol. 91, no. 5, pp. 586–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Cucchetti, G. Ercolani, G. Taffurelli et al., “A comprehensive analysis on expected years of life lost due to pancreatic cancer,” Pancreatology, vol. 16, no. 3, pp. 449–453, 2016. View at Publisher · View at Google Scholar
  28. D. P. Kelsen, R. Portenoy, H. Thaler, Y. Tao, and M. Brennan, “Pain as a predictor of outcome in patients with operable pancreatic carcinoma,” Surgery, vol. 122, no. 1, pp. 53–59, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Abaji, I. Cousineau, and A. Belmaaza, “BRCA2 regulates homologous recombination in response to DNA damage: implications for genome stability and carcinogenesis,” Cancer Research, vol. 65, no. 10, pp. 4117–4125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. K. Sharan, M. Morimatsu, U. Albrecht et al., “Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2,” Nature, vol. 386, no. 6627, pp. 804–810, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. D.-S. Lim and P. Hasty, “A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53,” Molecular and Cellular Biology, vol. 16, no. 12, pp. 7133–7143, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Connor, D. Bertwistle, P. Joseph Mee et al., “Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation,” Nature Genetics, vol. 17, no. 4, pp. 423–431, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. L. S. Friedman, F. C. Thistlethwaite, K. J. Patel et al., “Thymic lymphomas in mice with a truncating mutation in BRCA2,” Cancer Research, vol. 58, no. 7, pp. 1338–1343, 1998. View at Google Scholar · View at Scopus
  34. M. E. Moynahan, A. J. Pierce, and M. Jasin, “BRCA2 is required for homology-directed repair of chromosomal breaks,” Molecular Cell, vol. 7, no. 2, pp. 263–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. K. M. Murphy, K. A. Brune, C. Griffin et al., “Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%,” Cancer Research, vol. 62, no. 13, pp. 3789–3793, 2002. View at Google Scholar · View at Scopus
  36. M. Goggins, M. Schutte, J. Lu et al., “Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas,” Cancer Research, vol. 56, no. 23, pp. 5360–5364, 1996. View at Google Scholar · View at Scopus
  37. L. Huang, C. Wu, D. Yu et al., “Identification of common variants in BRCA2 and MAP2K4 for susceptibility to sporadic pancreatic cancer,” Carcinogenesis, vol. 34, no. 5, pp. 1001–1005, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Goggins, R. H. Hruban, and S. E. Kern, “BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications,” American Journal of Pathology, vol. 156, no. 5, pp. 1767–1771, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Rowley, A. Ohashi, G. Mondal et al., “Inactivation of Brca2 promotes Trp53-associated but inhibits KrasG12D-dependent pancreatic cancer development in mice,” Gastroenterology, vol. 140, no. 4, pp. 1303–1313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Skoulidis, L. D. Cassidy, V. Pisupati et al., “Germline Brca2 heterozygosity promotes KrasG12D-driven carcinogenesis in a murine model of familial pancreatic cancer,” Cancer Cell, vol. 18, no. 5, pp. 499–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. J. P. Struewing, P. Hartge, S. Wacholder et al., “The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews,” New England Journal of Medicine, vol. 336, no. 20, pp. 1401–1408, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Oddoux, J. P. Struewing, C. M. Clayton et al., “The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%,” Nature Genetics, vol. 14, no. 2, pp. 188–190, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. S. A. Hahn, B. Greenhalf, I. Ellis et al., “BRCA2 germline mutations in familial pancreatic carcinoma,” Journal of the National Cancer Institute, vol. 95, no. 3, pp. 214–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. F. J. Couch, M. R. Johnson, K. G. Rabe et al., “The prevalence of BRCA2 mutations in familial pancreatic cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 2, pp. 342–346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. Rustgi, “Familial pancreatic cancer: genetic advances,” Genes and Development, vol. 28, no. 1, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. T. A. Kunkel and D. A. Erie, “DNA mismatch repair,” Annual Review of Biochemistry, vol. 74, pp. 681–710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Jiricny, “The multifaceted mismatch-repair system,” Nature Reviews Molecular Cell Biology, vol. 7, no. 5, pp. 335–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Dong, Y. Li, K. R. Hess, J. L. Abbruzzese, and D. Li, “DNA mismatch repair gene polymorphisms affect survival in pancreatic cancer,” Oncologist, vol. 16, no. 1, pp. 61–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Habbe, P. Langer, M. Sina-Frey, and D. K. Bartsch, “Familial pancreatic cancer syndromes,” Endocrinology and Metabolism Clinics of North America, vol. 35, no. 2, pp. 417–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Luo, Y. Lu, K. Jin et al., “Pancreatic cancer: BRCA mutation and personalized treatment,” Expert Review of Anticancer Therapy, vol. 15, no. 10, pp. 1223–1231, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. H. Siddik, “Cisplatin: mode of cytotoxic action and molecular basis of resistance,” Oncogene, vol. 22, no. 47, pp. 7265–7279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. G. R. Oliver, E. Sugar, D. Laheru, and L. A. Diaz, “Family history of cancer and sensitivity to platinum chemotherapy in pancreatic adenocarcinoma,” in Proceedings of the Gastrointestinal Cancers Symposium, abstract 180, 2010.
  53. A. Sonnenblick, L. Kadouri, L. Appelbaum et al., “Complete remission, in BRCA2 mutation carrier with metastatic pancreatic adenocarcinoma, treated with cisplatin based therapy,” Cancer Biology and Therapy, vol. 12, no. 3, pp. 165–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Tran, G. Zogopoulos, A. Borgida, S. Holter, S. Gallinger, and M. J. Moore, “Platinum-based chemotherapy (pt-chemo) in pancreatic adenocarcinoma (pc) associated with brca mutations: a translational case series,” Journal of Clinical Oncology (ASCO Meeting 2012), vol. 30, abstract 217, 2012. View at Google Scholar
  55. T. Golan, Z. S. Kanji, R. Epelbaum et al., “Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers,” British Journal of Cancer, vol. 111, no. 6, pp. 1132–1138, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Waddell, M. Pajic, A.-M. Patch et al., “Whole genomes redefine the mutational landscape of pancreatic cancer,” Nature, vol. 518, no. 7540, pp. 495–501, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. J.-M. Lee, J. A. Ledermann, and E. C. Kohn, “PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies,” Annals of Oncology, vol. 25, no. 1, Article ID mdt384, pp. 32–40, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. N. McCabe, C. J. Lord, A. N. J. Tutt, N. M. B. Martin, G. C. M. Smith, and A. Ashworth, “BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of poly (ADP-Ribose) polymerase: an issue of potency,” Cancer Biology and Therapy, vol. 4, no. 9, pp. 934–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Porcelli, A. E. Quatrale, P. Mantuano et al., “Optimize radiochemotherapy in pancreatic cancer: PARP inhibitors a new therapeutic opportunity,” Molecular Oncology, vol. 7, no. 3, pp. 308–322, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Wang, Y. Kuramitsu, K. Tokuda et al., “Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer,” PLoS ONE, vol. 9, no. 10, Article ID e109076, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. D. A. Jacob, M. Bahra, J. M. Langrehr et al., “Combination therapy of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide and gemcitabine shows strong antitumor activity in pancreatic cancer cells,” Journal of Gastroenterology and Hepatology, vol. 22, no. 5, pp. 738–748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. Lowery, D. P. Kelsen, Z. K. Stadler et al., “An emerging entity: pancreatic adenocarcinoma associated with a known brca mutation: clinical descriptors, treatment implications, and future directions,” Oncologist, vol. 16, no. 10, pp. 1397–1402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. M. J. Pishvaian, H. Wang, T. Zhuang et al., “A phase I/II study of ABT-888 in combination with 5-fluorouracil (5-FU) and oxaliplatin (Ox) in patients with metastatic pancreatic cancer (MPC),” Journal of Clinical Oncology, vol. 31, supplement 4, abstract 147, 2013. View at Google Scholar
  64. E. M. O'Reilly, M. A. Lowery, M. F. Segal et al., “Phase IB trial of cisplatin (C), gemcitabine (G), and veliparib (V) in patients with known or potential BRCA or PALB2-mutated pancreas adenocarcinoma (PC),” Journal of Clinical Oncology, vol. 32, no. 5s, supplement, abstract 4023, 2014. View at Google Scholar
  65. A. V. Biankin, N. Waddell, K. S. Kassahn et al., “Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes,” Nature, vol. 491, no. 7424, pp. 399–405, 2012. View at Publisher · View at Google Scholar
  66. D. D. Von Hoff, T. J. Ervin, F. P. Arena et al., “Results of a randomized phase III trial (IMPaCT) of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients with metastatic adenocarcinoma of the pancreas with PET and CA19-9 correlates,” in Proceedings of the ASCO Annual Meeting, abstract 4005, 2013.
  67. L. A. Chantrill, A. M. Nagrial, C. Watson et al., “Precision medicine for advanced pancreas cancer: the individualized molecular pancreatic cancer therapy (IMPaCT) Trial,” Clinical Cancer Research, vol. 21, no. 9, pp. 2029–2037, 2015. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Sakai, E. M. Swisher, B. Y. Karlan et al., “Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers,” Nature, vol. 451, no. 7182, pp. 1116–1120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. U. Nöthlings, L. R. Wilkens, S. P. Murphy, J. H. Hankin, B. E. Henderson, and L. N. Kolonel, “Meat and fat intake as risk factors for pancreatic cancer: the multiethnic cohort study,” Journal of the National Cancer Institute, vol. 97, no. 19, pp. 1458–1465, 2005. View at Publisher · View at Google Scholar · View at Scopus