Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 1879837, 17 pages
http://dx.doi.org/10.1155/2016/1879837
Review Article

Applications of Chondrocyte-Based Cartilage Engineering: An Overview

1Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
2Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan

Received 14 May 2016; Revised 24 June 2016; Accepted 26 June 2016

Academic Editor: Magali Cucchiarini

Copyright © 2016 Abdul-Rehman Phull et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. W. Archer and P. Francis-West, “The chondrocyte,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 4, pp. 401–404, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. B. K. Hall and T. Miyake, “All for one and one for all: condensations and the initiation of skeletal development,” BioEssays, vol. 22, no. 2, pp. 138–147, 2000. View at Google Scholar · View at Scopus
  3. E. Kozhemyakina, A. B. Lassar, and E. Zelzer, “A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation,” Development, vol. 142, no. 5, pp. 817–831, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. K. L. Cooper, S. Oh, Y. Sung, R. R. Dasari, M. W. Kirschner, and C. J. Tabin, “Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions,” Nature, vol. 495, no. 7441, pp. 375–378, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. E. B. Hunziker, T. M. Quinn, and H.-J. Häuselmann, “Quantitative structural organization of normal adult human articular cartilage,” Osteoarthritis and Cartilage, vol. 10, no. 7, pp. 564–572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Lin, C. Willers, J. Xu, and M.-H. Zheng, “The chondrocyte: biology and clinical application,” Tissue Engineering, vol. 12, no. 7, pp. 1971–1984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. I. Roach, “New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix,” Journal of Bone and Mineral Research, vol. 12, no. 5, pp. 795–805, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Grimshaw and R. M. Mason, “Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension,” Osteoarthritis and Cartilage, vol. 9, no. 4, pp. 357–364, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. B. Knudson and W. Knudson, “Cartilage proteoglycans,” Seminars in Cell and Developmental Biology, vol. 12, no. 2, pp. 69–78, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Poole, M. Kobayashi, T. Yasuda et al., “Type II collagen degradation and its regulation in articular cartilage in osteoarthritis,” Annals of the Rheumatic Diseases, vol. 61, supplement 2, pp. ii78–ii81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Nagase and M. Kashiwagi, “Aggrecanases and cartilage matrix degradation,” Arthritis Research & Therapy, vol. 5, no. 2, pp. 94–103, 2003. View at Google Scholar · View at Scopus
  12. L. Farnworth, “Osteochondral defects of the knee,” Orthopedics, vol. 23, no. 2, pp. 146–157, 2000. View at Google Scholar · View at Scopus
  13. A. Mobasheri, G. Kalamegam, G. Musumeci, and M. E. Batt, “Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions,” Maturitas, vol. 78, no. 3, pp. 188–198, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. E. B. Hunziker, K. Lippuner, M. J. B. Keel, and N. Shintani, “An educational review of cartilage repair: precepts & practice—myths & misconceptions—progress & prospects,” Osteoarthritis and Cartilage, vol. 23, no. 3, pp. 334–350, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Baugé and K. Boumédiene, “Use of adult stem cells for cartilage tissue engineering: current status and future developments,” Stem Cells International, vol. 2015, Article ID 438026, 14 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Zhang, H. Ouyang, C. R. Dass, and J. Xu, “Current research on pharmacologic and regenerative therapies for osteoarthritis,” Bone Research, vol. 4, article 15040, 2016. View at Publisher · View at Google Scholar
  17. W. Shen, J. Chen, T. Zhu et al., “Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing,” Stem Cells Translational Medicine, vol. 3, no. 3, pp. 387–394, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Schminke and N. Miosge, “Cartilage repair in vivo: the role of migratory progenitor cells,” Current Rheumatology Reports, vol. 16, no. 11, pp. 1–8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. K. A. Athanasiou, E. M. Darling, and J. C. Hu, “Articular cartilage tissue engineering,” Synthesis Lectures on Tissue Engineering, vol. 1, no. 1, pp. 1–182, 2009. View at Google Scholar
  20. P. D. Benya and J. D. Shaffer, “Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels,” Cell, vol. 30, no. 1, pp. 215–224, 1982. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Dell'Accio, C. De Bari, and F. P. Luyten, “Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo,” Arthritis and Rheumatism, vol. 44, no. 7, pp. 1608–1619, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” The New England Journal of Medicine, vol. 331, no. 14, pp. 889–895, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Yu, M. Grynpas, and R. A. Kandel, “Composition of cartilagenous tissue with mineralized and non-mineralized zones formed in vitro,” Biomaterials, vol. 18, no. 21, pp. 1425–1431, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. M. B. Aydelotte, R. R. Greenhill, and K. E. Kuettner, “Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism,” Connective Tissue Research, vol. 18, no. 3, pp. 223–234, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. A. K. Dewan, M. A. Gibson, J. H. Elisseeff, and M. E. Trice, “Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques,” BioMed Research International, vol. 2014, Article ID 272481, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Mackay, S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester, and M. F. Pittenger, “Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow,” Tissue Engineering, vol. 4, no. 4, pp. 415–428, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. C. De Bari, F. Dell'Accio, P. Tylzanowski, and F. P. Luyten, “Multipotent mesenchymal stem cells from adult human synovial membrane,” Arthritis & Rheumatism, vol. 44, no. 8, pp. 1928–1942, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Vega, M. A. Martín-Ferrero, F. Del Canto et al., “Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial,” Transplantation, vol. 99, no. 8, pp. 1681–1690, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. Y.-G. Koh, S.-B. Jo, O.-R. Kwon et al., “Mesenchymal stem cell injections improve symptoms of knee osteoarthritis,” Arthroscopy, vol. 29, no. 4, pp. 748–755, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. Y.-G. Koh and Y.-J. Choi, “Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis,” Knee, vol. 19, no. 6, pp. 902–907, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Davatchi, B. S. Abdollahi, M. Mohyeddin, F. Shahram, and B. Nikbin, “Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients,” International Journal of Rheumatic Diseases, vol. 14, no. 2, pp. 211–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Orozco, A. Munar, R. Soler et al., “Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study,” Transplantation, vol. 95, no. 12, pp. 1535–1541, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. B. O. Diekman, N. Christoforou, V. P. Willard et al., “Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 47, pp. 19172–19177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Y. Ko, K. I. Kim, S. Park, and G. I. Im, “In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells,” Biomaterials, vol. 35, no. 11, pp. 3571–3581, 2014. View at Publisher · View at Google Scholar
  35. M.-J. Kim, M. J. Son, M.-Y. Son et al., “Generation of human induced pluripotent stem cells from osteoarthritis patient–derived synovial cells,” Arthritis and Rheumatism, vol. 63, no. 10, pp. 3010–3021, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. E. A. Makris, A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou, “Repair and tissue engineering techniques for articular cartilage,” Nature Reviews Rheumatology, vol. 11, no. 1, pp. 21–34, 2015. View at Publisher · View at Google Scholar · View at Scopus
  37. N. S. Hwang and J. Elisseeff, “Application of stem cells for articular cartilage regeneration,” The Journal of Knee Surgery, vol. 22, no. 1, pp. 60–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. M. Jukes, C. A. van Blitterswijk, and J. de Boer, “Skeletal tissue engineering using embryonic stem cells,” Journal of Tissue Engineering and Regenerative Medicine, vol. 4, no. 3, pp. 165–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. B. de Crombrugghe, V. Lefebvre, and K. Nakashima, “Regulatory mechanisms in the pathways of cartilage and bone formation,” Current Opinion in Cell Biology, vol. 13, no. 6, pp. 721–728, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Canalis, A. N. Economides, and E. Gazzerro, “Bone morphogenetic proteins, their antagonists, and the skeleton,” Endocrine Reviews, vol. 24, no. 2, pp. 218–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Horner, P. Kemp, C. Summers et al., “Expression and distribution of transforming growth factor-β isoforms and their signaling receptors in growing human bone,” Bone, vol. 23, no. 2, pp. 95–102, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Grimaud, D. Heymann, and F. Rédini, “Recent advances in TGF-β effects on chondrocyte metabolism: potential therapeutic roles of TGF-β in cartilage disorders,” Cytokine & Growth Factor Reviews, vol. 13, no. 3, pp. 241–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Fan, Y. Hu, L. Qin, X. Li, H. Wu, and R. Lv, “Porous gelatin–chondroitin–hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-β1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair,” Journal of Biomedical Materials Research Part A, vol. 77, no. 4, pp. 785–794, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. H. M. Van Beuningen, H. L. Glansbeek, P. M. Van Der Kraan, and W. B. Van Den Berg, “Differential effects of local application of BMP-2 or TGF-β1 on both articular cartilage composition and osteophyte formation,” Osteoarthritis and Cartilage, vol. 6, no. 5, pp. 306–317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. C. G. Williams, T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff, “In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel,” Tissue Engineering, vol. 9, no. 4, pp. 679–688, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Chen, M. Zhao, and G. R. Mundy, “Bone morphogenetic proteins,” Growth Factors, vol. 22, no. 4, pp. 233–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Vinatier, D. Mrugala, C. Jorgensen, J. Guicheux, and D. Noël, “Cartilage engineering: a crucial combination of cells, biomaterials and biofactors,” Trends in Biotechnology, vol. 27, no. 5, pp. 307–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Gründer, C. Gaissmaier, J. Fritz et al., “Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads,” Osteoarthritis and Cartilage, vol. 12, no. 7, pp. 559–567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. R. Haas and R. S. Tuan, “Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function,” Differentiation, vol. 64, no. 2, pp. 77–89, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Fernández-Lloris, F. Viñals, T. López-Rovira et al., “Induction of the Sry-related factor SOX6 contributes to bone morphogenetic protein-2-induced chondroblastic differentiation of C3H10T1/2 cells,” Molecular Endocrinology, vol. 17, no. 7, pp. 1332–1343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Hatakeyama, J. Nguyen, X. Wang, G. H. Nuckolls, and L. Shum, “Smad signaling in mesenchymal and chondroprogenitor cells,” The Journal of Bone & Joint Surgery—American Volume, vol. 85, supplement 3, pp. 13–18, 2003. View at Google Scholar · View at Scopus
  52. P. E. Di Cesare, S. R. Frenkel, C. S. Carlson, C. Fang, and C. Liu, “Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix,” Journal of Orthopaedic Research, vol. 24, no. 5, pp. 1118–1127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. C. Kuo, J. J. Rodrigo, A. H. Reddi, S. Curtiss, E. Grotkopp, and M. Chiu, “Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair,” Osteoarthritis and Cartilage, vol. 14, no. 11, pp. 1126–1135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Kuroda, A. Usas, S. Kubo et al., “Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells,” Arthritis & Rheumatism, vol. 54, no. 2, pp. 433–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Pizette and L. Niswander, “BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes,” Developmental Biology, vol. 219, no. 2, pp. 237–249, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Shukunami, Y. Ohta, M. Sakuda, and Y. Hiraki, “Sequential progression of the differentiation program by bone morphogenetic protein-2 in chondrogenic cell line ATDC5,” Experimental Cell Research, vol. 241, no. 1, pp. 1–11, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. L.-C. C. Yeh, A. D. Tsai, and J. C. Lee, “Cartilage-derived morphogenetic proteins induce osteogenic gene expression in the C2C12 mesenchymal cell line,” Journal of Cellular Biochemistry, vol. 95, no. 1, pp. 173–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Bai, Z. Xiao, Y. Pan et al., “Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes,” Biochemical and Biophysical Research Communications, vol. 325, no. 2, pp. 453–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Erlacher, C.-K. Ng, R. Ullrich, S. Krieger, and F. P. Luyten, “Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro,” Arthritis and Rheumatism, vol. 41, no. 2, pp. 263–273, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. P. C. Gray, L. M. Bilezikjian, C. A. Harrison, E. Wiater, and W. Vale, “Activins and inhibins: physiological roles, signaling mechanisms and regulation,” in Hormones and the Brain, pp. 1–28, Springer, Berlin, Germany, 2005. View at Google Scholar
  61. W. Vale, E. Wiater, P. Gray, C. Harrison, L. Bilezikjian, and S. Choe, “Activins and inhibins and their signaling,” Annals of the New York Academy of Sciences, vol. 1038, no. 1, pp. 142–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. I. N. Melas, A. D. Chairakaki, E. I. Chatzopoulou et al., “Modeling of signaling pathways in chondrocytes based on phosphoproteomic and cytokine release data,” Osteoarthritis and Cartilage, vol. 22, no. 3, pp. 509–518, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. D. M. Ornitz and P. J. Marie, “FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease,” Genes and Development, vol. 16, no. 12, pp. 1446–1465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Kato, Y. Hiraki, H. Inoue, M. Kinoshita, Y. Yutani, and F. Suzuki, “Differential and synergistic actions of somatomedin-like growth factors, fibroblast growth factor and epidermal growth factor in rabbit costal chondrocytes,” European Journal of Biochemistry, vol. 129, no. 3, pp. 685–690, 1983. View at Google Scholar · View at Scopus
  65. Y. Kato and D. Gospodarowicz, “Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor,” Journal of Cell Biology, vol. 100, no. 2, pp. 477–485, 1985. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Inoue, Y. Kato, M. Iwamoto, Y. Hiraki, M. Sakuda, and F. Suzuki, “Stimulation of cartilage-matrix proteoglycan synthesis by morphologically transformed chondrocytes grown in the presence of fibroblast growth factor and transforming growth factor-beta,” Journal of Cellular Physiology, vol. 138, no. 2, pp. 329–337, 1989. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Dailey, D. Ambrosetti, A. Mansukhani, and C. Basilico, “Mechanisms underlying differential responses to FGF signaling,” Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 233–247, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. R. C. Olney, J. Wang, J. E. Sylvester, and E. B. Mougey, “Growth factor regulation of human growth plate chondrocyte proliferation in vitro,” Biochemical and Biophysical Research Communications, vol. 317, no. 4, pp. 1171–1182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. C. A. Praul, B. C. Ford, and R. M. Leach, “Effect of fibroblast growth factors 1, 2, 4, 5, 6, 7, 8, 9, and 10 on avian chondrocyte proliferation,” Journal of Cellular Biochemistry, vol. 84, no. 2, pp. 359–366, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Hoffmann, S. Czichos, C. Kaps et al., “The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2,” Journal of Cell Science, vol. 115, no. 4, pp. 769–781, 2002. View at Google Scholar · View at Scopus
  71. E. E. Moore, A. M. Bendele, D. L. Thompson et al., “Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis,” Osteoarthritis and Cartilage, vol. 13, no. 7, pp. 623–631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Kato and M. Iwamoto, “Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation,” The Journal of Biological Chemistry, vol. 265, no. 10, pp. 5903–5909, 1990. View at Google Scholar · View at Scopus
  73. A. A. Stewart, C. R. Byron, H. Pondenis, and M. C. Stewart, “Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis,” American Journal of Veterinary Research, vol. 68, no. 9, pp. 941–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Ishii, H. Mizuta, A. Sei, J. Hirose, S. Kudo, and Y. Hiraki, “Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant,” Journal of Bone and Joint Surgery—Series B, vol. 89, no. 5, pp. 693–700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. C.-D. Oh and J.-S. Chun, “Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1,” The Journal of Biological Chemistry, vol. 278, no. 38, pp. 36563–36571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Martel-Pelletier, J. A. Di Battista, D. Lajeunesse, and J.-P. Pelletier, “IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis,” Inflammation Research, vol. 47, no. 3, pp. 90–100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. M. B. Schmidt, E. H. Chen, and S. E. Lynch, “A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair,” Osteoarthritis and Cartilage, vol. 14, no. 5, pp. 403–412, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Dupont and M. Holzenberger, “Biology of insulin-like growth factors in development,” Birth Defects Research Part C: Embryo Today: Reviews, vol. 69, no. 4, pp. 257–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. L. C. Davies, E. J. Blain, S. J. Gilbert, B. Caterson, and V. C. Duance, “The potential of IGF-1 and TGFβ1 for promoting ‘adult’ articular cartilage repair: an in vitro study,” Tissue Engineering—Part A, vol. 14, no. 7, pp. 1251–1261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Clevers, “Wnt/β-catenin signaling in development and disease,” Cell, vol. 127, no. 3, pp. 469–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Kikuchi, H. Yamamoto, and S. Kishida, “Multiplicity of the interactions of Wnt proteins and their receptors,” Cellular Signalling, vol. 19, no. 4, pp. 659–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Church, T. Nohno, C. Linker, C. Marcelle, and P. Francis-West, “Wnt regulation of chondrocyte differentiation,” Journal of Cell Science, vol. 115, no. 24, pp. 4809–4818, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. T. F. Day, X. Guo, L. Garrett-Beal, and Y. Yang, “Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis,” Developmental Cell, vol. 8, no. 5, pp. 739–750, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Chen, H. C. Whetstone, A. Youn et al., “β-Catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation,” The Journal of Biological Chemistry, vol. 282, no. 1, pp. 526–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. P. J. Chesterman and A. U. Smith, “Homotransplantation of articular cartilage and isolated chondrocytes. An experimental study in rabbits,” Journal of Bone and Joint Surgery—Series B, vol. 50, no. 1, pp. 184–197, 1968. View at Google Scholar · View at Scopus
  86. P. E. Harrison, I. K. Ashton, W. E. B. Johnson, S. L. Turner, J. B. Richardson, and B. A. Ashton, “The in vitro growth of human chondrocytes,” Cell and Tissue Banking, vol. 1, no. 4, pp. 255–260, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Takigawa, K. Tajima, H.-O. Pan et al., “Establishment of a clonal human chondrosarcoma cell line with cartilage phenotypes,” Cancer Research, vol. 49, no. 14, pp. 3996–4002, 1989. View at Google Scholar · View at Scopus
  88. Y.-K. Jung, J.-H. Jeong, H.-M. Ryoo et al., “Gene expression profile of human chondrocyte HCS-2/8 cell line by EST sequencing analysis,” Gene, vol. 330, no. 1-2, pp. 85–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Chansky, J. R. Robbins, S. Cha, W. H. Raskind, E. U. Conrad, and L. J. Sandell, “Expression of cartilage extracellular matrix and potential regulatory genes in a new human chondrosarcoma cell line,” Journal of Orthopaedic Research, vol. 16, no. 5, pp. 521–530, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. B. L. Atkinson, K. S. Fantle, J. J. Benedict, W. E. Huffer, and A. Gutierrez-Hartmann, “Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage,” Journal of Cellular Biochemistry, vol. 65, no. 3, pp. 325–339, 1997. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Shukunami, K. Ishizeki, T. Atsumi, Y. Ohta, F. Suzuki, and Y. Hiraki, “Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro,” Journal of Bone and Mineral Research, vol. 12, no. 8, pp. 1174–1188, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. S. M. Bernier and D. Goltzman, “Regulation of expression of the chondrocytic phenotype in a skeletal cell line (CFK2) in vitro,” Journal of Bone and Mineral Research, vol. 8, no. 4, pp. 475–484, 1993. View at Google Scholar · View at Scopus
  93. G. P. Lunstrum, D. R. Keene, N. B. Weksler, Y.-J. Cho, M. Cornwall, and W. A. Horton, “Chondrocyte differentiation in a rat mesenchymal cell line,” Journal of Histochemistry and Cytochemistry, vol. 47, no. 1, pp. 1–6, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Bergwitz, T. Wendlandt, E. Pötter et al., “A versatile chondrogenic rat calvaria cell line R-tTA-24 that permits tetracycline-regulated gene expression,” Histochemistry and Cell Biology, vol. 113, no. 2, pp. 145–150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Finger, C. Schörle, A. Zien, P. Gebhard, M. B. Goldring, and T. Aigner, “Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2,” Arthritis and Rheumatism, vol. 48, no. 12, pp. 3395–3403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. M. B. Goldring, J. R. Birkhead, L.-F. Suen et al., “Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes,” The Journal of Clinical Investigation, vol. 94, no. 6, pp. 2307–2316, 1994. View at Publisher · View at Google Scholar · View at Scopus
  97. J. R. Robbins, B. Thomas, L. Tan et al., “Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β,” Arthritis & Rheumatism, vol. 43, no. 10, pp. 2189–2201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Kokenyesi, L. Tan, J. R. Robbins, and M. B. Goldring, “Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype,” Archives of Biochemistry and Biophysics, vol. 383, no. 1, pp. 79–90, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. B. Grigolo, L. Roseti, S. Neri et al., “Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: maintenance of differentiated phenotype under defined culture conditions,” Osteoarthritis and Cartilage, vol. 10, no. 11, pp. 879–889, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Kuroda, T. Matsumoto, Y. Mifune et al., “Therapeutic strategy of third-generation autologous chondrocyte implantation for osteoarthritis,” Upsala Journal of Medical Sciences, vol. 116, no. 2, pp. 107–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Z. Samsudin and T. Kamarul, “The comparison between the different generations of autologous chondrocyte implantation with other treatment modalities: a systematic review of clinical trials,” Knee Surgery, Sports Traumatology, Arthroscopy, 2015. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Brittberg, “Autologous chondrocyte implantation-technique and long-term follow-up,” Injury, vol. 39, no. 1, pp. 40–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. D. A. Grande, M. I. Pitman, L. Peterson, D. Menche, and M. Klein, “The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation,” Journal of Orthopaedic Research, vol. 7, no. 2, pp. 208–218, 1989. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Brittberg, A. Nilsson, A. Lindahl, C. Ohlsson, and L. Peterson, “Rabbit articular cartilage defects treated with autologous cultured chondrocytes,” Clinical Orthopaedics and Related Research, no. 326, pp. 270–283, 1996. View at Google Scholar · View at Scopus
  105. B. Rahfoth, J. Weisser, F. Sternkopf, T. Aigner, K. Von Der Mark, and R. Bräuer, “Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits,” Osteoarthritis and Cartilage, vol. 6, no. 1, pp. 50–65, 1998. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Dell'Accio, J. Vanlauwe, J. Bellemans, J. Neys, C. De Bari, and F. P. Luyten, “Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation,” Journal of Orthopaedic Research, vol. 21, no. 1, pp. 123–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. H. A. Breinan, T. Minas, H.-P. Hsu, S. Nehrer, C. B. Sledge, and M. Spector, “Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model,” Journal of Bone and Joint Surgery—Series A, vol. 79, no. 10, pp. 1439–1451, 1997. View at Google Scholar · View at Scopus
  108. C. R. Lee, A. J. Grodzinsky, H.-P. Hsu, and M. Spector, “Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model,” Journal of Orthopaedic Research, vol. 21, no. 2, pp. 272–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Peterson, T. Minas, M. Brittberg, A. Nilsson, E. Sjögren-Jansson, and A. Lindahl, “Two-to 9-year outcome after autologous chondrocyte transplantation of the knee,” Clinical Orthopaedics and Related Research, no. 374, pp. 212–234, 2000. View at Google Scholar · View at Scopus
  110. G. Knutsen, J. O. Drogset, L. Engebretsen et al., “A randomized trial comparing autologous chondrocyte implantation with microfracture,” The Journal of Bone & Joint Surgery—American Volume, vol. 89, no. 10, pp. 2105–2112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Vanlauwe, D. B. F. Saris, J. Victor et al., “Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters,” The American Journal of Sports Medicine, vol. 39, no. 12, pp. 2566–2574, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Schulze-Tanzil, A. Mobasheri, P. de Souza, T. Johns, and M. Shakibaei, “Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis,” Osteoarthritis and Cartilage, vol. 12, no. 6, pp. 448–458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Brittberg, “Autologous chondrocyte transplantation,” Clinical Orthopaedics and Related Research, no. 367, pp. S147–S155, 1999. View at Google Scholar · View at Scopus
  114. M. Tobita, M. Ochi, Y. Uchio et al., “Treatment of growth plate injury with autogenous chondrocytes,” Acta Orthopaedica Scandinavica, vol. 73, no. 3, pp. 352–358, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Langenskiöld, “Traumatic premature closure of the distal tibial epiphyseal plate,” Acta Orthopaedica Scandinavica, vol. 38, no. 1–4, pp. 520–531, 1967. View at Publisher · View at Google Scholar · View at Scopus
  116. E. H. Lee, F. Chen, J. Chan, and K. Bose, “Treatment of growth arrest by transfer of cultured chondrocytes into physeal defects,” Journal of Pediatric Orthopaedics, vol. 18, no. 2, pp. 155–160, 1998. View at Publisher · View at Google Scholar · View at Scopus
  117. J. H. Henderson, J. F. Welter, J. M. Mansour, C. Niyibizi, A. I. Caplan, and J. E. Dennis, “Cartilage tissue engineering for laryngotracheal reconstruction: comparison of chondrocytes from three anatomic locations in the rabbit,” Tissue Engineering, vol. 13, no. 4, pp. 843–853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Weidenbecher, J. H. Henderson, H. M. Tucker, J. Z. Baskin, A. Awadallah, and J. E. Dennis, “Hyaluronan-based scaffolds to tissue-engineer cartilage implants for laryngotracheal reconstruction,” The Laryngoscope, vol. 117, no. 10, pp. 1745–1749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. P. Cui, W. Chen, and J. Luo, “Fabrication of cartilage in predetermined shapes from human nasoseptal chondrocytes with tissue engineering method,” Zhonghua er bi yan hou ke za zhi, vol. 36, no. 1, pp. 22–24, 2001. View at Google Scholar · View at Scopus
  120. S. C. Chang, J. A. Rowley, G. Tobias et al., “Injection molding of chondrocyte/alginate constructs in the shape of facial implants,” Journal of Biomedical Materials Research, vol. 55, no. 4, pp. 503–511, 2001. View at Publisher · View at Google Scholar · View at Scopus
  121. S. H. Kamil, M. P. Vacanti, B. S. Aminuddin, M. J. Jackson, C. A. Vacanti, and R. D. Eavey, “Tissue engineering of a human sized and shaped auricle using a mold,” Laryngoscope, vol. 114, no. 5, pp. 867–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. R. J. Smith and T. Malet, “Auricular cartilage grafting to correct lower conjunctival fornix retraction and eyelid malposition in anophthalmic patients,” Ophthalmic Plastic and Reconstructive Surgery, vol. 24, no. 1, pp. 13–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Hashikawa, H. Terashi, and S. Tahara, “Therapeutic strategy for the triad of acquired anophthalmic orbit,” Plastic and Reconstructive Surgery, vol. 119, no. 7, pp. 2182–2188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Kobayashi, H. Ishihara, R. Murakami, N. Kinoshita, and K. Tokunaga, “Total lower eyelid reconstruction with a prefabricated flap using auricular cartilage,” Journal of Cranio-Maxillofacial Surgery, vol. 36, no. 2, pp. 59–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Boccieri and A. Marano, “The conchal cartilage graft in nasal reconstruction,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 60, no. 2, pp. 188–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. H. Yanaga, K. Yanaga, K. Imai, M. Koga, C. Soejima, and K. Ohmori, “Clinical application of cultured autologous human auricular chondrocytes with autologous serum for craniofacial or nasal augmentation and repair,” Plastic and Reconstructive Surgery, vol. 117, no. 6, pp. 2019–2030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Gane, C. East, S. Jayaraj, and P. Andrews, “Rolled auricular cartilage grafts for dorsal augmentation rhinoplasty,” Journal of Laryngology and Otology, vol. 121, no. 4, pp. 387–389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. Y. X. Zhang, J. Yang, D. Wang et al., “Extended applications of vascularized preauricular and helical rim flaps in reconstruction of nasal defects,” Plastic and Reconstructive Surgery, vol. 121, no. 5, pp. 1589–1597, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Cao, A. Rodriguez, M. Vacanti, C. Ibarra, C. Arevalo, and C. A. Vacanti, “Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage,” Journal of Biomaterials Science, Polymer Edition, vol. 9, no. 5, pp. 475–487, 1998. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. L. Cao, E. Lach, T. H. Kim, A. Rodríguez, C. A. Arévalo, and C. A. Vacanti, “Tissue-engineered nipple reconstruction,” Plastic and Reconstructive Surgery, vol. 102, no. 7, pp. 2293–2298, 1998. View at Publisher · View at Google Scholar · View at Scopus
  131. H. Y. Tanabe, Y. Tai, K. Kiyokawa, and T. Yamauchi, “Nipple-areola reconstruction with a dermal-fat flap and rolled auricular cartilage,” Plastic and Reconstructive Surgery, vol. 100, no. 2, pp. 431–438, 1997. View at Publisher · View at Google Scholar · View at Scopus
  132. L. Yang, S. Korom, M. Welti et al., “Tissue engineered cartilage generated from human trachea using DegraPol® scaffold,” European Journal of Cardio-thoracic Surgery, vol. 24, no. 2, pp. 201–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. J. F. Grimmer, C. B. Gunnlaugsson, E. Alsberg et al., “Tracheal reconstruction using tissue-engineered cartilage,” Archives of Otolaryngology—Head and Neck Surgery, vol. 130, no. 10, pp. 1191–1196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. A. E. Bent, R. T. Tutrone, M. T. McLennan, K. Lloyd, M. J. Kennelly, and G. Badlani, “Treatment of intrinsic sphincter deficiency using autologous ear chondrocytes as a bulking agent,” Neurourology and Urodynamics, vol. 20, no. 2, pp. 157–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  135. D. A. Diamond and A. A. Caldamone, “Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results,” Journal of Urology, vol. 162, no. 3, pp. 1185–1188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Atala, L. G. Cima, W. Kim et al., “Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux,” The Journal of Urology, vol. 150, no. 2, part 2, pp. 745–747, 1993. View at Google Scholar · View at Scopus
  137. D. J. Cozzolino, M. Cendron, D. P. DeVore, and P. J. Hoopes, “The biological behavior of autologous collagen-based extracellular matrix injected into the rabbit bladder wall,” Neurourology and Urodynamics, vol. 18, no. 5, pp. 487–495, 1999. View at Publisher · View at Google Scholar · View at Scopus