Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 4540826, 9 pages
http://dx.doi.org/10.1155/2016/4540826
Research Article

Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors

1Department of Biotechnology, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749, Republic of Korea
2Department of Food Science and Nutrition, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 550-757, Republic of Korea
3Research Center on Anti-Obesity and Health Care, Chonnam National University, San 96-1, Dun-Duk Dong, Yosu, Chonnam 550-749, Republic of Korea
4Department of Environmental Oceanography, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749, Republic of Korea
5Department of Refrigeration Engineering, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749, Republic of Korea
6Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 550-757, Republic of Korea

Received 31 March 2016; Accepted 4 May 2016

Academic Editor: Pengjun Shi

Copyright © 2016 Muhammad Imran Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Khan, Rashmi, M. Z. Hussain, S. Prasad, and U. C. Banerjee, “Prospects of biodiesel production from microalgae in India,” Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2361–2372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. D. Klass, Biomass for Renewable Energy. Fuels and Chemical, Academic Press, New York, NY, USA, 1998.
  3. C. R. Carere, R. Sparling, N. Cicek, and D. B. Levin, “Third generation biofuels via direct cellulose fermentation,” International Journal of Molecular Sciences, vol. 9, no. 7, pp. 1342–1360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. G. P. Hammond, S. Kallu, and M. C. McManus, “Development of biofuels for the UK automotive market,” Applied Energy, vol. 85, no. 6, pp. 506–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Sánchez-Segado, L. J. Lozano, D. De Juan García, C. Godínez, A. P. De Los Ríos, and F. J. Hernández-Fernández, “Life Cycle Assessment analysis of ethanol production from carob pod,” Chemical Engineering Transactions, vol. 21, pp. 613–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Aikawa, A. Nishida, S.-H. Ho, J.-S. Chang, T. Hasunuma, and A. Kondo, “Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment,” Biotechnology for Biofuels, vol. 7, article 88, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Jones and S. P. Mayfield, “Algae biofuels: versatility for the future of bioenergy,” Current Opinion in Biotechnology, vol. 23, no. 3, pp. 346–351, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Banerjee, R. Sharma, Y. Chisti, and U. C. Banerjee, “Botryococcus braunii: a renewable source of hydrocarbons and other chemicals,” Critical Reviews in Biotechnology, vol. 22, no. 3, pp. 245–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Hu, M. Sommerfeld, E. Jarvis et al., “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances,” The Plant Journal, vol. 54, no. 4, pp. 621–639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero, “Biofuels from microalgae,” Biotechnology Progress, vol. 24, no. 4, pp. 815–820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. Best, S. Pflugmacher, C. Wiegand, F. B. Eddy, J. S. Metcalf, and G. A. Codd, “Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio),” Aquatic Toxicology, vol. 60, no. 3-4, pp. 223–231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. N. Rosenberg, G. A. Oyler, L. Wilkinson, and M. J. Betenbaugh, “A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution,” Current Opinion in Biotechnology, vol. 19, no. 5, pp. 430–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Sulfahri and T. Nurhidayati, “Aerobic and anaerobic process of spirogyra extract using different modes of Zymomonas mobilis,” Journal of Applied Environmental and Biological Sciences, vol. 1, no. 10, pp. 420–425, 2001. View at Google Scholar
  14. G. D. Price, M. R. Badger, F. J. Woodger, and B. M. Long, “Advances in understanding the cyanobacterial CO2-concentrating- mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants,” Journal of Experimental Botany, vol. 59, no. 7, pp. 1441–1461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Raven, M. Giordano, J. Beardall, and S. C. Maberly, “Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 367, no. 1588, pp. 493–507, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Zhang, P. Amendola, J. C. Hewson, M. Sommerfeld, and Q. Hu, “Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation,” Bioresource Technology, vol. 116, pp. 477–484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. H. D. Kumar, P. K. Yadava, and J. P. Gaur, “Electrical flocculation of the unicellular green alga Chlorella vulgaris Beijerinck,” Aquatic Botany, vol. 11, pp. 187–195, 1981. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-B. Seo, H.-J. Kim, O.-K. Lee, J.-H. Ha, H.-Y. Lee, and K.-H. Jung, “Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 2, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Senge and H. Senger, “Adaptation of photosynthetic apparatus of Chlorella and Ankistrodesmas to blue and red light,” Botanica Acta, vol. 104, no. 2, pp. 139–143, 1991. View at Publisher · View at Google Scholar
  21. B. Cheirsilp and S. Torpee, “Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation,” Bioresource Technology, vol. 110, pp. 510–516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Khoeyi, J. Seyfabadi, and Z. Ramezanpour, Effect of Light Intensity and Photoperiod on Biomass and Fatty Acid Composition of the Microalgae, Springer Science + Business Media, 2011.
  23. V. O. Ifeanyi, B. N. Anyanwu, J. N. Ogbulie, R. N. Nwabueze, W. Ekezie, and O. S. Lawal, “Determination of the effect of light and salt concentrations on aphanocapsa algal population,” African Journal of Microbiology Research, vol. 5, no. 17, pp. 2488–2492, 2011. View at Google Scholar · View at Scopus
  24. A. Konopka and T. D. Brock, “Changes in photosynthetic rate and pigment content of blue-green algae in Lake Mendota,” Applied and Environmental Microbiology, vol. 35, no. 3, pp. 527–532, 1978. View at Google Scholar · View at Scopus
  25. R. W. Hunt, S. Chinnasamy, A. Bhatnagar, and K. C. Das, “Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana,” Applied Biochemistry and Biotechnology, vol. 162, no. 8, pp. 2400–2414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Fuell, K. A. Elliott, C. C. Hanfrey, M. Franceschetti, and A. J. Michael, “Polyamine biosynthetic diversity in plants and algae,” Plant Physiology and Biochemistry, vol. 48, no. 7, pp. 513–520, 2010. View at Publisher · View at Google Scholar
  27. Y. K. Ho and J. Lascelles, “δ-Aminolevulinic acid dehydratase of Spirillum itersonii and the regulation of tetrapyrrole synthesis,” Archives of Biochemistry and Biophysics, vol. 144, no. 2, pp. 734–740, 1971. View at Publisher · View at Google Scholar · View at Scopus
  28. S. T. Rier and R. J. Stevenson, “Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and heterotrophic bacteria in stream periphyton,” Hydrobiologia, vol. 489, no. 1, pp. 179–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. H. W. Pearl, “Epi and endo biotic interactions of cyanobacteria in algae and symbiosis. Plant, animals, fungi, viruses, interaction explored,” Journal of General Microbiology, vol. 43, no. 1, pp. 23–45, 1992. View at Google Scholar
  30. J. Du, G. Zhao, F. Wang et al., “Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China),” Aquatic Ecology, vol. 47, no. 3, pp. 303–313, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. D. L. Miller and V. W. Rodwell, “Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates,” Journal of Biological Chemistry, vol. 246, no. 9, pp. 2758–2764, 1971. View at Google Scholar · View at Scopus
  32. B. Vanderhaegen, H. Neven, S. Coghe, K. J. Verstrepen, G. Derdelinckx, and H. Verachtert, “Bioflavoring and beer refermentation,” Applied Microbiology and Biotechnology, vol. 62, no. 2-3, pp. 140–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kumar, L. K. Singh, and S. Ghosh, “Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis,” Bioresource Technology, vol. 100, no. 13, pp. 3293–3297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. D. Kim, G. W. Chae, H. J. Seo et al., “Bioalcohol production with microalgae, microcystis aeruginosa,” Korean Society for Biotechnology and Bioengineering Journal, vol. 27, no. 6, pp. 335–340, 2012. View at Google Scholar
  35. J. Liu, J. Huang, and F. Chen, “Microalgae as feedstocks for biodiesel production,” in Biodiesel Feedstocks and Processing Technologies, M. Stoytcheva, Ed., vol. 78, p. 58, InTech, Rijeka, Croatia, 2011. View at Google Scholar
  36. M. K. Lam and K. T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, vol. 30, no. 3, pp. 673–690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Markou, I. Angelidaki, and D. Georgakakis, “Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels,” Applied Microbiology and Biotechnology, vol. 96, no. 3, pp. 631–645, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Matsumoto, H. Yokouchi, N. Suzuki, H. Ohata, and T. Matsunaga, “Saccharification of marine microalgae using marine bacteria for ethanol production,” Applied Biochemistry and Biotechnology, vol. 105, no. 1–3, pp. 247–254, 2003. View at Publisher · View at Google Scholar · View at Scopus