Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 4841756, 20 pages
http://dx.doi.org/10.1155/2016/4841756
Research Article

RNA Sequencing Reveals Xyr1 as a Transcription Factor Regulating Gene Expression beyond Carbohydrate Metabolism

Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China

Received 31 August 2016; Accepted 6 November 2016

Academic Editor: Muhammad I. Rajoka

Copyright © 2016 Liang Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. R. Lynd, C. E. Wyman, and T. U. Gerngross, “Biocommodity engineering,” Biotechnology Progress, vol. 15, no. 5, pp. 777–793, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. Himmel, S.-Y. Ding, D. K. Johnson et al., “Biomass recalcitrance: engineering plants and enzymes for biofuels production,” Science, vol. 315, no. 5813, pp. 804–807, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. S. Montenecourt and D. E. Eveleigh, “Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei,” in Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, vol. 181 of Advances in Chemistry, chapter 14, pp. 289–301, 1979. View at Publisher · View at Google Scholar
  4. E. T. Reese, “History of the cellulase program at the U.S. army Natick Development Center,” Biotechnology and Bioengineering Symposium, vol. 6, no. 6, pp. 9–20, 1976. View at Google Scholar · View at Scopus
  5. C. E. Wyman, “What is (and is not) vital to advancing cellulosic ethanol,” Trends in Biotechnology, vol. 25, no. 4, pp. 153–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. R. Lynd, M. S. Laser, D. Bransby et al., “How biotech can transform biofuels,” Nature Biotechnology, vol. 26, no. 2, pp. 169–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. P. Kubicek, M. Mikus, A. Schuster, M. Schmoll, and B. Seiboth, “Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina,” Biotechnology for Biofuels, vol. 2, article 19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Rauscher, E. Würleitner, C. Wacenovsky et al., “Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina,” Eukaryotic Cell, vol. 5, no. 3, pp. 447–456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Stricker, K. Grosstessner-Hain, E. Würleitner, and R. L. Mach, “Xyr1 (Xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina,” Eukaryotic Cell, vol. 5, no. 12, pp. 2128–2137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Akel, B. Metz, B. Seiboth, and C. P. Kubicek, “Molecular regulation of arabinan and L-Arabinose metabolism in hypocrea jecorina (Trichoderma reesei),” Eukaryotic Cell, vol. 8, no. 12, pp. 1837–1844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Stricker, M. G. Steiger, and R. L. Mach, “Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina,” FEBS Letters, vol. 581, no. 21, pp. 3915–3920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Calero-Nieto, A. Di Pietro, M. I. G. Roncero, and C. Hera, “Role of the transcriptional activator XlnR of Fusarium oxysporum in regulation of xylanase genes and virulence,” Molecular Plant-Microbe Interactions, vol. 20, no. 8, pp. 977–985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Sun, C. Tian, S. Diamond, and N. L. Glassa, “Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa,” Eukaryotic Cell, vol. 11, no. 4, pp. 482–493, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Klaubauf, H. M. Narang, H. Post et al., “Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi,” Fungal Genetics and Biology, vol. 72, pp. 73–81, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Furukawa, Y. Shida, N. Kitagami et al., “Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei,” Fungal Genetics and Biology, vol. 46, no. 8, pp. 564–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. dos Santos Castro, R. G. de Paula, A. C. Antoniêto, G. F. Persinoti, R. Silva-Rocha, and R. N. Silva, “Understanding the role of the master regulator XYR1 in Trichoderma reesei by global transcriptional analysis,” Frontiers in Microbiology, vol. 7, article 175, 2016. View at Publisher · View at Google Scholar
  17. M. Ilmén, C. Thrane, and M. Penttilä, “The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form,” Molecular and General Genetics, vol. 251, no. 4, pp. 451–460, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Serrato, L. A. Palomares, A. Meneses-Acosta, and O. T. Ramírez, “Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures,” Biotechnology and Bioengineering, vol. 88, no. 2, pp. 176–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. L. Mäntylä, K. H. Rossi, S. A. Vanhanen, M. E. Penttilä, P. L. Suominen, and K. M. H. Nevalainen, “Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains,” Current Genetics, vol. 21, no. 6, pp. 471–477, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Le Crom, W. Schackwitz, L. Pennacchio et al., “Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16151–16156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Portnoy, A. Margeot, V. Seidl-Seiboth et al., “Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in trichoderma reesei strains producing high and low levels of cellulase,” Eukaryotic Cell, vol. 10, no. 2, pp. 262–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. S. Sandberg, H. Andersson, B. Hallgren, K. Hasselblad, B. Isaksson, and L. Hultén, “Experimental model for in vivo determination of dietary fibre and its effect on the absorption of nutrients in the small intestine,” British Journal of Nutrition, vol. 45, no. 2, pp. 283–294, 1981. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Woldesenbet, A. P. Virk, N. Gupta, and P. Sharma, “Effect of microwave irradiation on xylanase production from wheat bran and biobleaching of eucalyptus kraft pulp,” Applied Biochemistry and Biotechnology, vol. 167, no. 1, pp. 100–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Nakayashiki, S. Hanada, N. B. Quoc, N. Kadotani, Y. Tosa, and S. Mayama, “RNA silencing as a tool for exploring gene function in ascomycete fungi,” Fungal Genetics and Biology, vol. 42, no. 4, pp. 275–283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Ma, J. Zhang, G. Zou, C. Wang, and Z. Zhou, “Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens,” Enzyme and Microbial Technology, vol. 49, no. 4, pp. 366–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Miettinen-Oinonen and P. Suominen, “Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3956–3964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Trapnell, L. Pachter, and S. L. Salzberg, “TopHat: discovering splice junctions with RNA-Seq,” Bioinformatics, vol. 25, no. 9, pp. 1105–1111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, article no. R25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Trapnell, B. A. Williams, G. Pertea et al., “Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation,” Nature Biotechnology, vol. 28, no. 5, pp. 511–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Anders and W. Huber, “Differential expression of RNA-Seq data at the gene level—the DESeq package,” 2012.
  31. L. Wang, Z. Feng, X. Wang, X. Wang, and X. Zhang, “DEGseq: an R package for identifying differentially expressed genes from RNA-seq data,” Bioinformatics, vol. 26, no. 1, pp. 136–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society. Series B. Methodological, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. R. A. Ogert, M. K. Lee, W. Ross, A. Buckler-White, M. A. Martin, and M. W. Cho, “N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism,” Journal of Virology, vol. 75, no. 13, pp. 5998–6006, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Surmeli, O. Ratmann, H.-W. Mewes, and I. V. Tetko, “FunCat functional inference with belief propagation and feature integration,” Computational Biology and Chemistry, vol. 32, no. 5, pp. 375–377, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  35. M. C. Walter, T. Rattei, R. Arnold et al., “PEDANT covers all complete RefSeq genomes,” Nucleic Acids Research, vol. 37, no. 1, pp. D408–D411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. T. M. Wood and K. M. Bhat, “Methods for measuring cellulase activities,” Methods in Enzymology, vol. 160, pp. 87–112, 1988. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Xiao, R. Storms, and A. Tsang, “Microplate-based filter paper assay to measure total cellulase activity,” Biotechnology and Bioengineering, vol. 88, no. 7, pp. 832–837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Turunen, M. Vuorio, F. Fenel, and M. Leisola, “Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH,” Protein Engineering, vol. 15, no. 2, pp. 141–145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Zhao, S. Xiang, X. Dai, and K. Yang, “A simplified diphenylamine colorimetric method for growth quantification,” Applied Microbiology and Biotechnology, vol. 97, no. 11, pp. 5069–5077, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Chen, G. Zou, L. Zhang et al., “The distinctive regulatory roles of PrtT in the cell metabolism of Penicillium oxalicum,” Fungal Genetics and Biology, vol. 63, pp. 42–54, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Ren, Y. Gu, Y. Wu et al., “Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum,” BMC Genomics, vol. 13, no. 1, article no. 349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Saloheimo, M. Paloheimo, S. Hakola et al., “Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials,” European Journal of Biochemistry, vol. 269, no. 17, pp. 4202–4211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. X.-L. Li, S. Špániková, R. P. de Vries, and P. Biely, “Identification of genes encoding microbial glucuronoyl esterases,” FEBS Letters, vol. 581, no. 21, pp. 4029–4035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. P. K. Foreman, D. Brown, L. Dankmeyer et al., “Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei,” Journal of Biological Chemistry, vol. 278, no. 34, pp. 31988–31997, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Noguchi, M. Sano, K. Kanamaru et al., “Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae,” Applied Microbiology and Biotechnology, vol. 85, no. 1, pp. 141–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Shallom and Y. Shoham, “Microbial hemicellulases,” Current Opinion in Microbiology, vol. 6, no. 3, pp. 219–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. S. G. Grishutin, A. V. Gusakov, A. V. Markov, B. B. Ustinov, M. V. Semenova, and A. P. Sinitsyn, “Specific xyloglucanases as a new class of polysaccharide-degrading enzymes,” Biochimica et Biophysica Acta, vol. 1674, no. 3, pp. 268–281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. R. Mach-Aigner, M. E. Pucher, and R. L. Mach, “D-xylose as a repressor or inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei),” Applied and Environmental Microbiology, vol. 76, no. 6, pp. 1770–1776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. A. Hasper, J. Visser, and L. H. de Graaff, “The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression,” Molecular Microbiology, vol. 36, no. 1, pp. 193–200, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Levasseur, M. Saloheimo, D. Navarro et al., “Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study,” BMC Biochemistry, vol. 11, , article no. 32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Kirk, “Degradation of lignin,” in Microbial Degradation of Organic Compounds, Marcel Dekker, New York, NY, USA, 1984. View at Google Scholar
  53. S. S. Adav, L. T. Chao, and S. K. Sze, “Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation,” Molecular and Cellular Proteomics, vol. 11, no. 7, 2012. View at Publisher · View at Google Scholar
  54. S. S. Pao, I. T. Paulsen, and M. H. Saier Jr., “Major facilitator superfamily,” Microbiology and Molecular Biology Reviews, vol. 62, no. 1, pp. 1–34, 1998. View at Google Scholar · View at Scopus
  55. V. S. Reddy, M. A. Shlykov, R. Castillo, E. I. Sun, and M. H. Saier Jr., “The major facilitator superfamily (MFS) revisited,” FEBS Journal, vol. 279, no. 11, pp. 2022–2035, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. M. H. Saier Jr., “Families of transmembrane sugar transport proteins,” Molecular Microbiology, vol. 35, no. 4, pp. 699–710, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. C. P. Kubicek, R. Messner, F. Gruber, M. Mandels, and E. M. Kubicek-Pranz, “Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei. Involvement of a constitutive, sophorose-inducible, glucose-inhibited β- diglucoside permease,” Journal of Biological Chemistry, vol. 268, no. 26, pp. 19364–19368, 1993. View at Google Scholar · View at Scopus
  58. J. M. Galazka, C. Tian, W. T. Beeson, B. Martinez, N. L. Glass, and J. H. D. Cate, “Cellodextrin transport in yeast for improved biofuel production,” Science, vol. 330, no. 6000, pp. 84–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Ivanova, J. A. Bååth, B. Seiboth, and C. P. Kubicek, “Systems analysis of lactose metabolism in trichoderma reesei identifies a lactose permease that is essential for cellulase induction,” PLOS ONE, vol. 8, no. 5, Article ID e62631, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Zhang, Y. Kou, J. Xu et al., “Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis,” The Journal of Biological Chemistry, vol. 288, no. 46, pp. 32861–32872, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. G. W. Gooday, W.-Y. Zhu, and R. W. O'Donnell, “What are the roles of chitinases in the growing fungus?” FEMS Microbiology Letters, vol. 100, no. 1–3, pp. 387–391, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Takaya, D. Yamazaki, H. Horiuchi, A. Ohta, and M. Takagi, “Cloning and Characterization of a Chitinase-encoding Gene (chiA) from Aspergillus nidulans, Disruption of Which Decreases Germination Frequency and Hyphal Growth,” Bioscience, Biotechnology and Biochemistry, vol. 62, no. 1, pp. 60–65, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Yamazaki, D. Yamazaki, N. Takaya, M. Takagi, A. Ohta, and H. Horiuchi, “A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans,” Current Genetics, vol. 51, no. 2, pp. 89–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Seidl, B. Huemer, B. Seiboth, and C. P. Kubicek, “A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases,” FEBS Journal, vol. 272, no. 22, pp. 5923–5939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Bischof, L. Fourtis, A. Limbeck, C. Gamauf, B. Seiboth, and C. P. Kubicek, “Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose,” Biotechnology for Biofuels, vol. 6, no. 1, article 127, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Seidl, “Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions,” Fungal Biology Reviews, vol. 22, no. 1, pp. 36–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. I. Stals, B. Samyn, K. Sergeant et al., “Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina,” FEMS Microbiology Letters, vol. 303, no. 1, pp. 9–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Stals, S. Karkehabadi, S. Kim et al., “High resolution crystal structure of the Endo-N-Acetyl-β-D-glucosaminidase responsible for the Deglycosylation of Hypocrea jecorina cellulases,” PLoS ONE, vol. 7, no. 7, Article ID e40854, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. W. Wei, L. Chen, G. Zou et al., “N-glycosylation affects the proper folding, enzymatic characteristics and production of a fungal β-glucosidase,” Biotechnology and Bioengineering, vol. 110, no. 12, pp. 3075–3084, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. M. E. Katz, S. M. Bernardo, and B. F. Cheetham, “The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: Evidence for a role for CreA in the response to carbon starvation,” Current Genetics, vol. 54, no. 1, pp. 47–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Maras, N. Callewaert, K. Piens et al., “Molecular cloning and enzymatic characterization of a Trichoderma reesei 1,2-α-D-mannosidase,” Journal of Biotechnology, vol. 77, no. 2-3, pp. 255–263, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Van Petegem, H. Contreras, R. Contreras, and J. Van Beeumen, “Trichoderma reesei α-1,2-mannosidase: structural basis for the cleavage of four consecutive mannose residues,” Journal of Molecular Biology, vol. 312, no. 1, pp. 157–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. I. G. Jones, V. Fairhurst, and H. M. Sealy-Lewis, “ADHII in Aspergillus nidulans is induced by carbon starvation stress,” Fungal Genetics and Biology, vol. 32, no. 1, pp. 33–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Pinan-Lucarré, A. Balguerie, and C. Clavé, “Accelerated cell death in Podospora autophagy mutants,” Eukaryotic Cell, vol. 4, no. 11, pp. 1765–1774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. M. G. Santoro, “Heat shock factors and the control of the stress response,” Biochemical Pharmacology, vol. 59, no. 1, pp. 55–63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. J. J. Cotto and R. I. Morimoto, “Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors,” Biochemical Society Symposium, vol. 64, pp. 105–118, 1999. View at Google Scholar · View at Scopus
  77. M. Montero-Barrientos, R. E. Cardoza, S. Gutiérrez, E. Monte, and R. Hermosa, “The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T. harzianum,” Current Genetics, vol. 52, no. 1, pp. 45–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Häkkinen, M. J. Valkonen, A. Westerholm-Parvinen et al., “Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production,” Biotechnology for Biofuels, vol. 7, no. 1, article 14, 2014. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Ghassemi, A. Lichius, F. Bidard et al., “The β-importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei,” Molecular Microbiology, vol. 96, no. 2, pp. 405–418, 2015. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Andrianopoulos, S. Kourambas, J. A. Sharp, M. A. Davis, and M. J. Hynes, “Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression,” Journal of Bacteriology, vol. 180, no. 7, pp. 1973–1977, 1998. View at Google Scholar · View at Scopus
  81. N. S. Dunn-Coleman, A. B. Tomsett, and R. H. Garrett, “The regulation of nitrate assimilation in Neurospora crassa: biochemical analysis of the nmr-1 mutants,” MGG Molecular & General Genetics, vol. 182, no. 2, pp. 234–239, 1981. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Macios, M. X. Caddick, P. Weglenski, C. Scazzocchio, and A. Dzikowska, “The GATA factors AREA and AREB together with the co-repressor NMRA, negatively regulate arginine catabolism in Aspergillus nidulans in response to nitrogen and carbon source,” Fungal Genetics and Biology, vol. 49, no. 3, pp. 189–198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Cziferszky, R. L. Mach, and C. P. Kubicek, “Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei),” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14688–14694, 2002. View at Publisher · View at Google Scholar · View at Scopus