Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 5012341, 9 pages
http://dx.doi.org/10.1155/2016/5012341
Review Article

A Review of Recent Advances in Neuroprotective Potential of 3-N-Butylphthalide and Its Derivatives

Department of Neurology, The Southeast University Affiliated Zhong Da Hospital, No. 87 Dingjiaqiao, Nanjing, Jiangsu Province 210009, China

Received 16 June 2016; Revised 30 October 2016; Accepted 1 November 2016

Academic Editor: Gjumrakch Aliev

Copyright © 2016 Idriss Ali Abdoulaye and Yi Jing Guo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Seidl and J. A. Potashkin, “The promise of neuroprotective agents in Parkinson's disease,” Frontiers in Neurology, vol. 2, article 68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. B. Dunnett and A. Bjorklund, “Prospects for new restorative and neuroprotective treatments in Parkinson's disease,” Nature, vol. 399, no. 6738, supplement, pp. A32–A39, 1999. View at Google Scholar
  3. J. K. Andersen, “Oxidative stress in neurodegeneration: cause or consequence?” Nature Medicine, vol. 10, supplement, pp. S18–S25, 2004. View at Google Scholar
  4. M. Wang, Q.-Y. Zhang, W.-Y. Hua et al., “Pharmacokinetics, safety and tolerability of L-3-v-butylphthalide tablet after single and multiple oral administrations in healthy Chinese volunteers,” Brazilian Journal of Pharmaceutical Sciences, vol. 51, no. 3, pp. 525–531, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Diao, Z. Ma, H. Wang et al., “Simultaneous quantitation of 3-n-butylphthalide (NBP) and its four major metabolites in human plasma by LC-MS/MS using deuterated internal standards,” Journal of Pharmaceutical and Biomedical Analysis, vol. 78-79, pp. 19–26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Diao, P. Deng, C. Xie et al., “Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformations,” Drug Metabolism and Disposition, vol. 41, no. 2, pp. 430–444, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Diao, X. Pang, C. Xie, Z. Guo, D. Zhong, and X. Chen, “Bioactivation of 3-n-butylphthalide via sulfation of its major metabolite 3-hydroxy-NBP: mediated mainly by sulfotransferase 1A1,” Drug Metabolism and Disposition, vol. 42, no. 4, pp. 774–781, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-L. Liu, S.-J. Liao, J.-S. Zeng et al., “dl-3n-Butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP,” Journal of the Neurological Sciences, vol. 260, no. 1-2, pp. 106–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Peng, Y. Hu, S. Xu, N. Feng, L. Wang, and X. Wang, “L-3-n-Butylphthalide regulates amyloid precursor protein processing by PKC and MAPK pathways in SK-N-SH cells over-expressing wild type human APP695,” Neuroscience Letters, vol. 487, no. 2, pp. 211–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Feng, Y. Peng, M. Liu, and L. Cui, “Dl-3-n-butylphthalide extends survival by attenuating glial activation in a mouse model of amyotrophic lateral sclerosis,” Neuropharmacology, vol. 62, no. 2, pp. 1004–1010, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Zhao, W. Yun, Q. Zhang et al., “Mobilization of circulating endothelial progenitor cells by dl-3-n-butylphthalide in acute ischemic stroke patients,” Journal of Stroke and Cerebrovascular Diseases, vol. 25, no. 4, pp. 752–760, 2016. View at Publisher · View at Google Scholar
  12. W. Wang, X.-X. Cha, J. Reiner et al., “Synthesis and biological activity of n-butylphthalide derivatives,” European Journal of Medicinal Chemistry, vol. 45, no. 5, pp. 1941–1946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Peng, X. Zeng, Y. Feng, and X. Wang, “Antiplatelet and antithrombotic activity of L-3-n-butylphthalide in rats,” Journal of Cardiovascular Pharmacology, vol. 43, no. 6, pp. 876–881, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Lan, X. Xu, W. Xu et al., “Discovery of 3-n-butyl-2,3-dihydro-1H-isoindol-1-one as a potential anti-ischemic stroke agent,” Drug Design, Development and Therapy, vol. 9, pp. 3377–3391, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Sheng, K. Hua, C. Yang et al., “Novel hybrids of 3-n-butylphthalide and edaravone: design, synthesis and evaluations as potential anti-ischemic stroke agents,” Bioorganic and Medicinal Chemistry Letters, vol. 25, no. 17, Article ID 22880, pp. 3535–3540, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Wang, L. Wang, T. Li et al., “Novel hybrids of optically active ring-opened 3-n-butylphthalide derivative and isosorbide as potential anti-ischemic stroke agents,” Journal of Medicinal Chemistry, vol. 56, no. 7, pp. 3078–3089, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Yin, L. Lan, Z. Huang et al., “Discovery of a ring-opened derivative of 3-n-butylphthalide bearing NO/H2S-donating moieties as a potential anti-ischemic stroke agent,” European Journal of Medicinal Chemistry, vol. 115, pp. 369–380, 2016. View at Publisher · View at Google Scholar
  18. X. Wang, L. Wang, Z. Huang et al., “Synthesis and biological evaluation of nitric oxide releasing derivatives of 6-amino-3-n-butylphthalide as potential antiplatelet agents,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 7, pp. 1985–1988, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Wang, L. Wang, X. Sheng et al., “Design, synthesis and biological evaluation of hydrogen sulfide releasing derivatives of 3-n-butylphthalide as potential antiplatelet and antithrombotic agents,” Organic and Biomolecular Chemistry, vol. 12, no. 31, pp. 5995–6004, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. W. He, W. Zhou, and Z. Hu, “Chinese herbal extract dl-3n-butylphthalide: a commonly used drug for the treatment of ischemic stroke as a novel therapeutic approach to treat neurodegenerative diseases,” Neural Regeneration Research, vol. 6, no. 35, pp. 2773–2778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Chang and X.-L. Wang, “Effects of chiral 3-n-butylphthalide on apoptosis induced by transient focal cerebral ischemia in rats,” Acta Pharmacologica Sinica, vol. 24, no. 8, pp. 796–804, 2003. View at Google Scholar · View at Scopus
  22. J. M. Li, Y. Li, M. Ogle et al., “DL-3-n-butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the JNK pathway,” Brain Research, vol. 1359, pp. 216–226, 2010. View at Publisher · View at Google Scholar
  23. Q. Zhao, C. Zhang, X. Wang, L. Chen, H. Ji, and Y. Zhang, “(S)-ZJM-289, a nitric oxide-releasing derivative of 3-n-butylphthalide, protects against ischemic neuronal injury by attenuating mitochondrial dysfunction and associated cell death,” Neurochemistry International, vol. 60, no. 2, pp. 134–144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. W. H. Yang, L. Li, R. Huang, Z. Pei, S. Liao, and J. Zeng, “Hypoxia inducible factor-1alpha mediates protection of DL-3-n-butylphthalide in brain microvascular endothelial cells against oxygen glucose deprivation-induced injury,” Neural Regeneration Research, vol. 7, no. 12, pp. 948–954, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Sun, M. Feng, X. Tian et al., “Dl-3-n-Butylphthalide protects rat bone marrow stem cells against hydrogen peroxide-induced cell death through antioxidation and activation of PI3K-Akt pathway,” Neuroscience Letters, vol. 516, no. 2, pp. 247–252, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Zhang, Z. Guo, Y. Xu, Y. Li, and J. Song, “N-Butylphthalide (NBP) ameliorated cerebral ischemia reperfusion-induced brain injury via HGF-regulated TLR4/NF-κB signaling pathway,” Biomedicine & Pharmacotherapy, vol. 83, pp. 658–666, 2016. View at Publisher · View at Google Scholar
  27. W. Zhao, C. Luo, J. Wang et al., “3-N-butylphthalide improves neuronal morphology after chronic cerebral ischemia,” Neural Regeneration Research, vol. 9, no. 7, pp. 719–726, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Bederson, L. H. Pitts, M. Tsuji, M. C. Nishimura, R. L. Davis, and H. Bartkowski, “Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination,” Stroke, vol. 17, no. 3, pp. 472–476, 1986. View at Publisher · View at Google Scholar · View at Scopus
  29. L.-C. Yang, J. Li, S.-F. Xu et al., “L-3-n-butylphthalide promotes neurogenesis and neuroplasticity in cerebral ischemic rats,” CNS Neuroscience and Therapeutics, vol. 21, no. 9, pp. 733–741, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Lesage and M. Lazdunski, “Molecular and functional properties of two-pore-domain potassium channels,” American Journal of Physiology—Renal Physiology, vol. 279, no. 5, pp. F793–F801, 2000. View at Google Scholar · View at Scopus
  31. Z.-B. Li, H.-X. Zhang, L.-L. Li, and X.-L. Wang, “Enhanced expressions of arachidonic acid-sensitive tandem-pore domain potassium channels in rat experimental acute cerebral ischemia,” Biochemical and Biophysical Research Communications, vol. 327, no. 4, pp. 1163–1169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Xu, Y. Pan, and X. Wang, “Alterations in the expression of lipid and mechano-gated two-pore domain potassium channel genes in rat brain following chronic cerebral ischemia,” Molecular Brain Research, vol. 120, no. 2, pp. 205–209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Zhang, H. Yin, W. Wang, J. Li, and X. Wang, “Over-expressed human TREK-1 inhibits CHO cell proliferation via inhibiting PKA and p38 MAPK pathways and subsequently inducing G1 arrest,” Acta Pharmacologica Sinica, vol. 37, no. 9, pp. 1190–1198, 2016. View at Publisher · View at Google Scholar
  34. G. Xi, X. Zhang, L. Zhang et al., “Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1,” Psychopharmacology, vol. 214, no. 3, pp. 747–759, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Wang, J. Song, W. Xiao et al., “Changes in lipid-sensitive two-pore domain potassium channel TREK-1 expression and its involvement in astrogliosis following cerebral ischemia in rats,” Journal of Molecular Neuroscience, vol. 46, no. 2, pp. 384–392, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Hughes, J. Magnay, M. Foreman, S. J. Publicover, J. P. Dobson, and A. J. El Haj, “Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts,” Journal of Cellular Physiology, vol. 206, no. 3, pp. 738–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. X.-C. Ji, W.-H. Zhao, D.-X. Cao, Q.-Q. Shi, and X.-L. Wang, “Novel neuroprotectant chiral 3-n-butylphthalide inhibits tandem-pore-domain potassium channel TREK-1,” Acta Pharmacologica Sinica, vol. 32, no. 2, pp. 182–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Burns and S. Iliffe, “Alzheimer's disease,” British Medical Journal, vol. 338, article b158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Hashimoto, E. Rockenstein, L. Crews, and E. Masliah, “Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases,” NeuroMolecular Medicine, vol. 4, no. 1-2, pp. 21–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Lei, C.-Y. Zhao, D.-M. Liu et al., “L -3-n-butylphthalide attenuates β-amyloid-induced toxicity in neuroblastoma SH-SY5Y cells through regulating mitochondrion-mediated apoptosis and MAPK signaling,” Journal of Asian Natural Products Research, vol. 16, no. 8, pp. 854–864, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Fernández-Moriano, E. González-Burgos, and M. P. Gómez-Serranillos, “Mitochondria-targeted protective compounds in Parkinson's and Alzheimer's diseases,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 408927, 30 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. H.-M. Wang, T. Zhang, J.-K. Huang, and X.-J. Sun, “3-N-butylphthalide (NBP) attenuates the amyloid-β-induced inflammatory responses in cultured astrocytes via the nuclear factor-κB signaling pathway,” Cellular Physiology and Biochemistry, vol. 32, no. 1, pp. 235–242, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Peng, Y. Hu, S. Xu et al., “L-3-n-butylphthalide reduces tau phosphorylation and improves cognitive deficits in AβPP/PS1-alzheimer's transgenic mice,” Journal of Alzheimer's Disease, vol. 29, no. 2, pp. 379–391, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Wang, Z. Wang, J. Xie et al., “Dl-3-n-butylphthalide-induced upregulation of antioxidant defense is involved in the enhancement of cross talk between CREB and Nrf2 in an Alzheimer's disease mouse model,” Neurobiology of Aging, vol. 38, pp. 32–46, 2016. View at Publisher · View at Google Scholar
  45. S. E. Counts and E. J. Mufson, “The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 4, pp. 263–272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Tapia-Arancibia, E. Aliaga, M. Silhol, and S. Arancibia, “New insights into brain BDNF function in normal aging and Alzheimer disease,” Brain Research Reviews, vol. 59, no. 1, pp. 201–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Peng, J. Wuu, E. J. Mufson, and M. Fahnestock, “Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease,” Journal of Neurochemistry, vol. 93, no. 6, pp. 1412–1421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. D. Ginsberg, M. J. Alldred, S. E. Counts et al., “Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression,” Biological Psychiatry, vol. 68, no. 10, pp. 885–893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Xiang, J. Pan, F. Chen et al., “L-3-n-butylphthalide improves cognitive impairment of APP/PS1 mice by BDNF/TrkB/PI3K/AKT pathway,” International Journal of Clinical and Experimental Medicine, vol. 7, no. 7, pp. 1706–1713, 2014. View at Google Scholar · View at Scopus
  50. M. G. Murer, Q. Yan, and R. Raisman-Vozari, “Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease,” Progress in Neurobiology, vol. 63, no. 1, pp. 71–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Zhang, L. Huang, S. Shi, S. Xu, X. Wang, and Y. Peng, “L-3-n-butylphthalide rescues hippocampal synaptic failure and attenuates neuropathology in aged APP/PS1 Mouse Model of Alzheimer's disease,” CNS Neuroscience & Therapeutics, vol. 22, no. 12, pp. 979–987, 2016. View at Publisher · View at Google Scholar
  52. J. Hardy, “Amyloid, the presenilins and Alzheimer's disease,” Trends in Neurosciences, vol. 20, no. 4, pp. 154–159, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. K. G. Mawuenyega, W. Sigurdson, V. Ovod et al., “Decreased clearance of CNS β-amyloid in Alzheimer's disease,” Science, vol. 330, no. 6012, p. 1774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Cai, B. Zhao, and A. Ratka, “Oxidative stress and β-amyloid protein in Alzheimer's disease,” NeuroMolecular Medicine, vol. 13, no. 4, pp. 223–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Liang et al., Effects of 3-n-Butylphthalide from Celery on Vascular Dementia, pp. 963–971, 2015.
  56. Y. P. Huai, Y. H. Dong, J. Xu et al., “L-3-n-butylphthalide protects against vascular dementia via activation of the Akt kinase pathway,” Neural Regeneration Research, vol. 8, no. 19, pp. 1733–1743, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Zhang, L. Lü, W. M. Chan, Y. Huang, M. S. M. Wai, and D. T. Yew, “Effects of DL-3-n-Butylphthalide on vascular dementia and angiogenesis,” Neurochemical Research, vol. 37, no. 5, pp. 911–919, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Wang, L.-Q. Huang, X.-C. Tang, and H.-Y. Zhang, “Retrospect and prospect of active principles from Chinese herbs in the treatment of dementia,” Acta Pharmacologica Sinica, vol. 31, no. 6, pp. 649–664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Zhao, S. Xu, Y. Peng et al., “Potassium 2-(1-hydroxypentyl)-benzoate improves learning and memory deficits in chronic cerebral hypoperfused rats,” Neuroscience Letters, vol. 541, pp. 155–160, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Wang, H. Chen, X.-J. Sun, and Z.-J. Ke, “Improvement of cognitive deficits in SAMP8 mice by 3-n-butylphthalide,” Neurological Research, vol. 36, no. 3, pp. 224–233, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Ma, S. Xu, B. Liu et al., “Long-term treatment of l-3-n-butylphthalide attenuated neurodegenerative changes in aged rats,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 379, no. 6, pp. 565–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. J. M. Beitz, “Parkinson's disease: a review,” Frontiers in Bioscience—Scholar, vol. 6, no. 1, pp. 65–74, 2014. View at Google Scholar · View at Scopus
  63. J. M. Shulman, P. L. De Jager, and M. B. Feany, “Parkinson's disease: genetics and pathogenesis,” Annual Review of Pathology: Mechanisms of Disease, vol. 6, pp. 193–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Liu, J. Huang, R. Chen et al., “Protection against neurotoxicity by an autophagic mechanism,” Brazilian Journal of Medical and Biological Research, vol. 45, no. 5, pp. 401–407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Koppula, H. Kumar, S. V. More, B. W. Kim, I. S. Kim, and D. K. Choi, “Recent advances on the neuroprotective potential of antioxidants in experimental models of Parkinson's disease,” International Journal of Molecular Sciences, vol. 13, no. 8, pp. 10608–10629, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. N. Xiong, J. Huang, C. Chen et al., “Dl-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson's disease,” Neurobiology of Aging, vol. 33, no. 8, pp. 1777–1791, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. O. Hardiman, L. H. Van Den Berg, and M. C. Kiernan, “Clinical diagnosis and management of amyotrophic lateral sclerosis,” Nature Reviews Neurology, vol. 7, no. 11, pp. 639–649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. A. S. Limpert, M. E. Mattmann, and N. D. P. Cosford, “Recent progress in the discovery of small molecules for the treatment of amyotrophic lateral sclerosis (ALS),” Beilstein Journal of Organic Chemistry, vol. 9, pp. 717–732, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. Y.-G. Wang, Y. Li, C.-Y. Wang et al., “L-3-n-butylphthalide protects rats' cardiomyocytes from ischaemia/reperfusion-induced apoptosis by affecting the mitochondrial apoptosis pathway,” Acta Physiologica, vol. 210, no. 3, pp. 524–533, 2014. View at Publisher · View at Google Scholar
  70. T. Zhang, W. Jia, and X. Sun, “3-n-butylphthalide (NBP) reduces apoptosis and enhances vascular endothelial growth factor (VEGF) up-regulation in diabetic rats,” Neurological Research, vol. 32, no. 4, pp. 390–396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Zhu, Y. Zhang, and C. Yang, “Protective effect of 3-n-butylphthalide against hypertensive nephropathy in spontaneously hypertensive rats,” Molecular Medicine Reports, vol. 11, no. 2, pp. 1448–1454, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Hu, B. Liu, Y. Zuo, D. Liu, R. Xie, and W. Cui, “dl-3-n-butylphthalide suppresses PDGF-BB-stimulated vascular smooth muscle cells proliferation via induction of autophagy,” Life Sciences, vol. 151, pp. 182–188, 2016. View at Publisher · View at Google Scholar
  73. J. Li, S. Zhang, L. Zhang, R. Wang, and M. Wang, “Effects of l-3-n-butylphthalide on cognitive dysfunction and NR2B expression in hippocampus of streptozotocin (STZ)-Induced Diabetic Rats,” Cell Biochemistry and Biophysics, vol. 71, no. 1, pp. 315–322, 2015. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Maiese, “Programming apoptosis and autophagy with novel approaches for diabetes mellitus,” Current Neurovascular Research, vol. 12, no. 2, pp. 173–188, 2015. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Maiese, “New insights for oxidative stress and diabetes mellitus,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 875961, 17 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  76. K. S. Carvalho, “Mitochondrial dysfunction in demyelinating diseases,” Seminars in Pediatric Neurology, vol. 20, no. 3, pp. 194–201, 2013. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Wu, Q. Huang, X. Liu, and X. Wei, “Dl-3-n-butylphthalide is effective for demyelination: A Case-Combined Study,” Clinical Neurology and Neurosurgery, vol. 137, pp. 83–88, 2015. View at Publisher · View at Google Scholar · View at Scopus