Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 5302069, 8 pages
Research Article

Maraviroc-Mediated Lung Protection following Trauma-Hemorrhagic Shock

1Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
2College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan

Received 29 February 2016; Revised 6 June 2016; Accepted 10 July 2016

Academic Editor: Hartmut Jaeschke

Copyright © 2016 Fu-Chao Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Objectives. The peroxisome proliferator-activated receptor gamma (PPARγ) pathway exerts anti-inflammatory effects in response to injury. Maraviroc has been shown to have potent anti-inflammatory effects. The aim of this study was to investigate whether PPARγ plays an important role in maraviroc-mediated lung protection following trauma-hemorrhage. Methods. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35–40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of maraviroc (3 mg/kg, intravenously) with and without a PPARγ inhibitor GW9662 (1 mg/kg, intravenously), GW9662, or vehicle was administered. Lung water content, tissue histology, and other various parameters were measured ( rats/group) 24 hours after resuscitation. One-way ANOVA and Tukey’s testing were used for statistical analysis. Results. Trauma-hemorrhage significantly increased lung water content, myeloperoxidase activity, intercellular adhesion molecule-1, interleukin-6, and interleukin-1β levels. These parameters significantly improved in the maraviroc-treated rats subjected to trauma-hemorrhage. Maraviroc treatment also decreased lung tissue damage as compared to the vehicle-treated trauma-hemorrhaged rats. Coadministration of GW9662 with maraviroc abolished the maraviroc-induced beneficial effects on these parameters and lung injury. Conclusion. These results suggest that PPARγ might play a key role in maraviroc-mediated lung protection following trauma-hemorrhage.