Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 5340574, 13 pages
http://dx.doi.org/10.1155/2016/5340574
Research Article

Basket-Type Catheters: Diagnostic Pitfalls Caused by Deformation and Limited Coverage

1Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
2Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ·​ Bad Krozingen, Medical Center, University of Freiburg, 79106 Freiburg, Germany
3Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
4Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany

Received 28 July 2016; Accepted 27 October 2016

Academic Editor: Flavia Ravelli

Copyright © 2016 Tobias Oesterlein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Triedman, K. J. Jenkins, S. D. Colan, R. Van Praagh, J. E. Lock, and E. P. Walsh, “Multipolar endocardial mapping of the right heart using a basket catheter: acute and chronic animal studies,” PACE—Pacing and Clinical Electrophysiology, vol. 20, no. 1, pp. 51–59, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Rodriguez, D. C. Man, R. F. Coyne, D. J. Callans, C. D. Gottlieb, and F. E. Marchlinski, “Type I atrial flutter ablation guided by a basket catheter,” Journal of Cardiovascular Electrophysiology, vol. 9, no. 7, pp. 761–766, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Schmitt, B. Zrenner, M. Schneider et al., “Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias,” Circulation, vol. 99, no. 18, pp. 2414–2422, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Zrenner, G. Ndrepepa, M. Schneider et al., “Basket catheter-guided three-dimensional activation patterns construction and ablation of common type atrial flutter,” PACE—Pacing and Clinical Electrophysiology, vol. 23, no. 9, pp. 1350–1358, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Barbaro, P. Bartolini, G. Calcagnini, F. Censi, and A. Michelucci, “Measure of synchronisation of right atrial depolarisation wavefronts during atrial fibrillation,” Medical & Biological Engineering & Computing, vol. 40, no. 1, pp. 56–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Schmitt, G. Ndrepepa, S. Weber et al., “Biatrial multisite mapping of atrial premature complexes triggering onset of atrial fibrillation,” The American Journal of Cardiology, vol. 89, no. 12, pp. 1381–1387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Ndrepepa, M. R. Karch, M. A. E. Schneider et al., “Characterization of paroxysmal and persistent atrial fibrillation in the human left atrium during initiation and sustained episodes,” Journal of Cardiovascular Electrophysiology, vol. 13, no. 6, pp. 525–532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kumagai, M. Ogawa, H. Noguchi, T. Yasuda, H. Nakashima, and K. Saku, “Electrophysiologic properties of pulmonary veins assessed using a multielectrode basket catheter,” Journal of the American College of Cardiology, vol. 43, no. 12, pp. 2281–2289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Arentz, L. Haegeli, P. Sanders et al., “High-density mapping of spontaneous pulmonary vein activity initiating atrial fibrillation in humans,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 1, pp. 31–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Zrenner, G. Ndrepepa, M. Schneider et al., “Computer-assisted animation of atrial tachyarrhythmias recorded with a 64-electrode basket catheter,” Journal of the American College of Cardiology, vol. 34, no. 7, pp. 2051–2060, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Narayan, D. E. Krummen, K. Shivkumar, P. Clopton, W.-J. Rappel, and J. M. Miller, “Treatment of atrial fibrillation by the ablation of localized sources: confirm (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial,” Journal of the American College of Cardiology, vol. 60, no. 7, pp. 628–636, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Laughner, S. Shome, N. Child et al., “Practical considerations of mapping persistent atrial fibrillation with whole-chamber basket catheters,” JACC: Clinical Electrophysiology, vol. 2, no. 1, pp. 55–65, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. T. G. Oesterlein, J. Schmid, S. Bauer et al., “Analysis and visualization of intracardiac electrograms in diagnosis and research: concept and application of KaPAVIE,” Computer Methods and Programs in Biomedicine, vol. 127, pp. 165–173, 2016. View at Publisher · View at Google Scholar
  14. G. Lenis, N. Pilia, T. Oesterlein, A. Luik, C. Schmitt, and O. Dössel, “P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference,” Biomedical Engineering, vol. 61, no. 1, pp. 37–56, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. A. N. Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  16. M. W. Krueger, G. Seemann, K. Rhode et al., “Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation,” IEEE Transactions on Medical Imaging, vol. 32, no. 1, pp. 73–84, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. M. W. Krueger, V. Schmidt, C. Tobón et al., “Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach,” in Functional Imaging and Modeling of the Heart: 6th International Conference, FIMH 2011, New York City, NY, USA, May 25–27, 2011. Proceedings, L. Axel and D. Metaxas, Eds., vol. 6666 of Lecture Notes in Computer Science, pp. 223–232, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  18. M. W. Krueger, A. Dorn, D. U. J. Keller et al., “In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state,” Medical and Biological Engineering and Computing, vol. 51, no. 10, pp. 1105–1119, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Seemann, F. B. Sachse, M. Karl, D. L. Weiss, V. Heuveline, and O. Dössel, “Framework for modular, flexible and efficient solving the cardiac bidomain equations using PETSc,” in Progress in Industrial Mathematics at ECMI 2008, A. D. Fitt, J. Norbury, H. Ockendon, and E. Wilson, Eds., vol. 15 of Mathematics in Industry, pp. 363–369, Springer, New York, NY, USA, 2010. View at Publisher · View at Google Scholar
  20. P. Kuklik, S. Zeemering, B. Maesen et al., “Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and hilbert transform,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 1, pp. 296–302, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Kuklik, A. Van Hunnik, S. Zeemering et al., “Technical challenges of rotor identification during atrial fibrillation using phase singularity detection,” Europace, vol. 17, supplement 3, p. iii20, 2015. View at Google Scholar
  22. P. Benharash, E. Buch, P. Frank et al., “Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 8, no. 3, pp. 554–561, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. W.-J. Rappel and S. M. Narayan, “Theoretical considerations for mapping activation in human cardiac fibrillation,” Chaos, vol. 23, no. 2, Article ID 023113, 10 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. P. Kuklik, S. Zeemering, A. van Hunnik et al., “Identification of rotors during human atrial fibrillation using contact mapping and phase singularity detection: technical considerations,” IEEE Transactions on Biomedical Engineering, 2016. View at Publisher · View at Google Scholar
  25. U. Richter, L. Faes, F. Ravelli, and L. Sornmo, “Propagation pattern analysis during atrial fibrillation based on sparse modeling,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 5, pp. 1319–1328, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Jamil-Copley, N. Linton, M. Koa-Wing et al., “Application of ripple mapping with an electroanatomic mapping system for diagnosis of atrial tachycardias,” Journal of Cardiovascular Electrophysiology, vol. 24, no. 12, pp. 1361–1369, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. C. D. Cantwell, C. H. Roney, F. S. Ng, J. H. Siggers, S. J. Sherwin, and N. S. Peters, “Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping,” Computers in Biology and Medicine, vol. 65, pp. 229–242, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. B. Zaman and N. S. Peters, “The rotor revolution: conduction at the eye of the storm in atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 7, no. 6, pp. 1230–1236, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Sommer, S. Kircher, S. Rolf et al., “Successful repeat catheter ablation of recurrent longstanding persistent atrial fibrillation with rotor elimination as the procedural endpoint: a case series,” Journal of Cardiovascular Electrophysiology, vol. 27, no. 3, pp. 274–280, 2016. View at Publisher · View at Google Scholar
  30. E. Buch, M. Share, R. Tung et al., “Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience,” Heart Rhythm, vol. 13, no. 3, pp. 636–641, 2016. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Mohanty, C. Gianni, P. Mohanty et al., “RETRACTED: impact of rotor ablation in nonparoxysmal atrial fibrillation patients results from the randomized OASIS trial [J Am Coll Cardiol 2016;68:274–82],” Journal of the American College of Cardiology, vol. 68, no. 3, pp. 274–282, 2016. View at Publisher · View at Google Scholar
  32. S. M. Narayan, K. Shivkumar, D. E. Krummen, J. M. Miller, and W.-J. Rappel, “Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms,” Circulation, vol. 6, no. 1, pp. 58–67, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Chrispin, E. Gucuk Ipek, S. Zahid et al., “Lack of regional association between atrial late gadolinium enhancement on cardiac magnetic resonance and atrial fibrillation rotors,” Heart Rhythm, vol. 13, no. 3, pp. 654–660, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. A. S. Jadidi, E. Duncan, S. Miyazaki et al., “Functional nature of electrogram fractionation demonstrated by left atrial high-density mapping,” Circulation: Arrhythmia and Electrophysiology, vol. 5, no. 1, pp. 32–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Rotter, Y. Takahashi, P. Sanders et al., “Reduction of fluoroscopy exposure and procedure duration during ablation of atrial fibrillation using a novel anatomical navigation system,” European Heart Journal, vol. 26, no. 14, pp. 1415–1421, 2005. View at Publisher · View at Google Scholar · View at Scopus