Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 6437641, 10 pages
http://dx.doi.org/10.1155/2016/6437641
Research Article

Sundarban Honey Confers Protection against Isoproterenol-Induced Myocardial Infarction in Wistar Rats

1Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
2Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
3Department of Biochemistry and Molecular Biology, Gonoshasthaya Samaj Vittik Medical College, Gono University, Mirzanagar, Savar, Dhaka 1344, Bangladesh
4Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Received 16 March 2016; Revised 18 April 2016; Accepted 3 May 2016

Academic Editor: Tamer Mohamed

Copyright © 2016 Rizwana Afroz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Mustari, “The challenges and coping strategies of ‘mowal’ the honey collectors of sundarban, Bangladesh,” International Research Journal of Social Science, vol. 2, no. 6, pp. 7–11, 2013. View at Google Scholar
  2. R. Afroz, E. M. Tanvir, Md. F. Hossain et al., “Protective effect of sundarban honey against acetaminophen-induced acute hepatonephrotoxicity in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 143782, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. E. M. Tanvir, R. Afroz, M. A. Z. Chowdhury et al., “Honey has a protective effect against chlorpyrifos-induced toxicity on lipid peroxidation, diagnostic markers and hepatic histoarchitecture,” European Journal of Integrative Medicine, vol. 7, no. 5, pp. 525–533, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Rajadurai and P. Stanely Mainzen Prince, “Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats,” Toxicology, vol. 230, no. 2-3, pp. 178–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Anversa and E. H. Sonnenblick, “Ischemic cardiomyopathy: pathophysiologic mechanisms,” Progress in Cardiovascular Diseases, vol. 33, no. 1, pp. 49–70, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Ittagi, V. K. Merugumolu, and R. S. Siddamsetty, “Cardioprotective effect of hydroalcoholic extract of Tecoma stans flowers against isoproterenol induced myocardial infarction in rats,” Asian Pacific Journal of Tropical Disease, vol. 4, no. 1, pp. S378–S384, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. E. R. Petrich, O. Schanne, and A. P. Zumino, “Electrophysiological responses to ischemia and reperfusion,” in Myocardial Ischemia: Mechanisms, Reperfusion, Protection, pp. 115–133, Springer, 1996. View at Google Scholar
  8. C. J. L. Murray and A. D. Lopez, “Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study,” The Lancet, vol. 349, no. 9064, pp. 1498–1504, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Rona, “Catecholamine cardiotoxicity,” Journal of Molecular and Cellular Cardiology, vol. 17, no. 4, pp. 291–306, 1985. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Singal, N. Kapur, K. S. Dhillon, R. E. Beamish, and N. S. Dhalla, “Role of free radicals in catecholamine-induced cardiomyopathy,” Canadian Journal of Physiology and Pharmacology, vol. 60, no. 11, pp. 1390–1397, 1982. View at Publisher · View at Google Scholar · View at Scopus
  11. M. I. Khalil, I. Ahmmed, R. Ahmed et al., “Amelioration of isoproterenol-induced oxidative damage in rat myocardium by Withania somnifera leaf extract,” BioMed Research International, vol. 2015, Article ID 624159, 10 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Higuchi, “Changes of lipid peroxides and α-tocopherol in rats with experimentally induced myocardial necrosis,” Acta Medica Okayama, vol. 36, no. 2, pp. 113–124, 1982. View at Google Scholar · View at Scopus
  13. J. G. Topliss, A. M. Clark, E. Ernst et al., “Natural and synthetic substances related to human health (IUPAC technical report),” Pure and Applied Chemistry, vol. 74, no. 10, pp. 1957–1985, 2002. View at Google Scholar · View at Scopus
  14. A. Islam, I. Khalil, N. Islam et al., “Physicochemical and antioxidant properties of Bangladeshi honeys stored for more than one year,” BMC Complementary and Alternative Medicine, vol. 12, no. 1, article 177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Afroz, E. Tanvir, S. Paul, N. C. Bhoumik, S. H. Gan, and M. I. Khalil, “DNA damage inhibition properties of sundarban honey and its phenolic composition,” Journal of Food Biochemistry, 2015. View at Publisher · View at Google Scholar
  16. M. Nandave, S. Ojha, and D. Arya, “Protective role of flavonoids in cardiovascular diseases,” Natural Product Radiance, vol. 4, pp. 166–176, 2005. View at Google Scholar
  17. V. S. Panda and S. R. Naik, “Cardioprotective activity of Ginkgo biloba phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation,” Experimental and Toxicologic Pathology, vol. 60, no. 4-5, pp. 397–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. S. El Denshary, M. A. Al-Gahazali, F. A. Mannaa, H. A. Salem, N. S. Hassan, and M. A. Abdel-Wahhab, “Dietary honey and ginseng protect against carbon tetrachloride-induced hepatonephrotoxicity in rats,” Experimental and Toxicologic Pathology, vol. 64, no. 7-8, pp. 753–760, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar · View at Scopus
  20. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Publisher · View at Google Scholar · View at Scopus
  21. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  22. A. Upaganlawar, C. Gandhi, and R. Balaraman, “Effect of green tea and vitamin E combination in isoproterenol induced myocardial infarction in rats,” Plant Foods for Human Nutrition, vol. 64, no. 1, pp. 75–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Antman, J.-P. Bassand, W. Klein et al., “Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction,” Journal of the American College of Cardiology, vol. 36, no. 3, pp. 959–969, 2000. View at Publisher · View at Google Scholar
  24. D. H. Priscilla and P. S. M. Prince, “Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats,” Chemico-Biological Interactions, vol. 179, no. 2-3, pp. 118–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. H. Sabeena Farvin, R. Anandan, S. H. S. Kumar, K. S. Shiny, T. V. Sankar, and T. K. Thankappan, “Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats,” Pharmacological Research, vol. 50, no. 3, pp. 231–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Patel, A. Upaganlawar, R. Zalawadia, and R. Balaraman, “Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: a biochemical, electrocardiographic and histoarchitectural evaluation,” European Journal of Pharmacology, vol. 644, no. 1–3, pp. 160–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Salter and D. A. White, “Effects of dietary fat on cholesterol metabolism: regulation of plasma LDL concentrations,” Nutrition Research Reviews, vol. 9, pp. 241–257, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Gesquière, N. Loreau, A. Minnich, J. Davignon, and D. Blache, “Oxidative stress leads to cholesterol accumulation in vascular smooth muscle cells,” Free Radical Biology and Medicine, vol. 27, no. 1-2, pp. 134–145, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Morimoto, A. Kiyama, K. Kameda, H. Ninomiya, T. Tsujita, and H. Okuda, “Mechanism of the stimulatory action of okadaic acid on lipolysis in rat fat cells,” Journal of Lipid Research, vol. 41, no. 2, pp. 199–204, 2000. View at Google Scholar · View at Scopus
  30. T. Radhiga, C. Rajamanickam, S. Senthil, and K. V. Pugalendi, “Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats,” Food and Chemical Toxicology, vol. 50, no. 11, pp. 3971–3977, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Buring, G. T. O'Connor, S. Z. Goldhaber et al., “Decreased HDL2 and HDL3 cholesterol, Apo A-I and Apo A-II, and increased risk of myocardial infarction,” Circulation, vol. 85, no. 1, pp. 22–29, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. V. M. R. Papasani, B. Hanumantharayappa, and A. Annapurna, “Cardioprotective effect of naringin against doxorubicin induced cardiomyopathy in rats,” Indo American Journal of Pharmaceutical Research, vol. 4, pp. 2593–2598, 2014. View at Google Scholar
  33. E. A. Alagwu, R. O. Nneli, J. N. Egwurugwu, and E. E. Osim, “Gastric cytoprotection and honey intake in albino rats,” Nigerian Journal of Physiological Sciences, vol. 26, no. 1, pp. 39–42, 2011. View at Google Scholar · View at Scopus
  34. E. A. Alagwu, J. E. Okwara, R. O. Nneli, and E. E. Osim, “Effect of honey intake on serum cholesterol, triglycerides and lipoprotein levels in albino rats and potential benefits on risks of coronary heart disease,” Nigerian Journal of Physiological Sciences, vol. 26, no. 2, pp. 161–165, 2011. View at Google Scholar · View at Scopus
  35. S. Ngamukote, K. Mäkynen, T. Thilawech, and S. Adisakwattana, “Cholesterol-lowering activity of the major polyphenols in grape seed,” Molecules, vol. 16, no. 6, pp. 5054–5061, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Brodt-Eppley, P. White, S. Jenkins, and D. Y. Hui, “Plasma cholesterol esterase level is a determinant for an atherogenic lipoprotein profile in normolipidemic human subjects,” Biochimica et Biophysica Acta, vol. 1272, no. 2, pp. 69–72, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. S. R. J. Maxwell, “Prospects for the use of antioxidant therapies,” Drugs, vol. 49, no. 3, pp. 345–361, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Polidoro, C. Di Ilio, A. Arduini, G. La Rovere, and G. Federici, “Superoxide dismutase, reduced glutathione and TBA-reactive products in erythrocytes of patients with multiple sclerosis,” International Journal of Biochemistry, vol. 16, no. 5, pp. 505–509, 1984. View at Publisher · View at Google Scholar · View at Scopus
  39. V. S. Panda and S. R. Naik, “Evaluation of cardioprotective activity of Ginkgo biloba and Ocimum sanctum in rodents,” Alternative Medicine Review, vol. 14, no. 2, pp. 161–171, 2009. View at Google Scholar · View at Scopus
  40. G. Saravanan, P. Ponmurugan, M. Sathiyavathi, S. Vadivukkarasi, and S. Sengottuvelu, “Cardioprotective activity of Amaranthus viridis Linn: effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats,” International Journal of Cardiology, vol. 165, no. 3, pp. 494–498, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. M. I. Khalil, E. M. Tanvir, R. Afroz, S. A. Sulaiman, and S. H. Gan, “Cardioprotective effects of tualang honey: amelioration of cholesterol and cardiac enzymes levels,” BioMed Research International, vol. 2015, Article ID 286051, 8 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Pigeolet, P. Corbisier, A. Houbion et al., “Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals,” Mechanisms of Ageing and Development, vol. 51, no. 3, pp. 283–297, 1990. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Kobayashi, L. Li, N. Iwamoto et al., “The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds,” Molecular and Cellular Biology, vol. 29, no. 2, pp. 493–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Erejuwa, S. Sulaiman, M. Suhaimi, K. Sirajudeen, S. Salleh, and S. Gurtu, “Impaired Nrf2-ARE pathway contributes to increased oxidative damage in kidney of spontaneously hypertensive rats: Effect of antioxidant (honey),” International Journal of Cardiology, vol. 152, supplement 1, article S45, 2011. View at Publisher · View at Google Scholar