Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 6861702, 7 pages
http://dx.doi.org/10.1155/2016/6861702
Research Article

Interaction Effects between Organochlorine Pesticides and Isoflavones In Vitro and In Vivo

Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, China

Received 30 March 2016; Revised 25 May 2016; Accepted 16 June 2016

Academic Editor: Kaiyu He

Copyright © 2016 Yunbo Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. A. Mahmoud, Y. Ikenaka, Y. B. Yohannes et al., “Distribution and health risk assessment of organochlorine pesticides (OCPs) residue in edible cattle tissues from northeastern part of Egypt: High accumulation level of OCPs in tongue,” Chemosphere, vol. 144, pp. 1365–1371, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. F.-L. Tang, M. Zhang, J.-F. Xu et al., “Pollution characteristics and health risk assessment of organochlorine pesticides (OCPs) in the water of Lake Qiandao and its major input rivers,” Huan Jing Ke Xue, vol. 35, no. 5, pp. 1735–1741, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-Z. Yang, Z.-X. Wang, L.-H. Ma et al., “The organochlorine pesticides residues in the invasive ductal breast cancer patients,” Environmental Toxicology and Pharmacology, vol. 40, no. 3, pp. 698–703, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Pi, S. E. Chia, C. N. Ong, and B. C. Kelly, “Associations of serum organohalogen levels and prostate cancer risk: results from a case-control study in Singapore,” Chemosphere, vol. 144, pp. 1505–1512, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Messina, B. J. Caan, D. I. Abrams, M. Hardy, and G. Maskarinec, “It's time for clinicians to reconsider their proscription against the use of soyfoods by breast cancer patients,” Oncology, vol. 27, no. 5, pp. 430–437, 2013. View at Google Scholar · View at Scopus
  6. E. J. Choi and G.-H. Kim, “Antiproliferative activity of daidzein and genistein may be related to ERα/c-erbB-2 expression in human breast cancer cells,” Molecular Medicine Reports, vol. 7, no. 3, pp. 781–784, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Pestana, D. Teixeira, A. Faria, V. Domingues, R. Monteiro, and C. Calhau, “Effects of environmental organochlorine pesticides on human breast cancer: putative involvement on invasive cell ability,” Environmental Toxicology, vol. 30, no. 2, pp. 168–176, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Briz, J.-M. Molina-Molina, S. Sánchez-Redondo et al., “Differential estrogenic effects of the persistent organochlorine pesticides dieldrin, endosulfan, and lindane in primary neuronal cultures,” Toxicological Sciences, vol. 120, no. 2, pp. 413–427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. V. M. Shekhar, J. Werdell, and V. S. Basrur, “Environmental estrogen stimulation of growth and estrogen receptor function in preneoplastic and cancerous human breast cell lines,” Journal of the National Cancer Institute, vol. 89, no. 23, pp. 1774–1782, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Kwon, “Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies,” Food Science & Nutrition, vol. 2, no. 6, pp. 613–622, 2014. View at Publisher · View at Google Scholar
  11. R. Cholewa, D. Beutling, J. Budzyk, M. Pietrzak, and S. Walorczyk, “Persistent organochlorine pesticides in internal organs of coypu, Myocastor coypus,” Journal of Environmental Science and Health—Part B Pesticides, Food Contaminants, and Agricultural Wastes, vol. 50, no. 8, pp. 590–594, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Fan, S. Fan, H. Wang et al., “Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway,” Stem Cell Research & Therapy, vol. 4, no. 6, article 146, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Dall, J. Vieusseux, A. Unsworth, R. Anderson, and K. Britt, “Low dose, low cost estradiol pellets can support MCF-7 tumour growth in nude mice without bladder symptoms,” Journal of Cancer, vol. 6, no. 12, pp. 1331–1336, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. E. J. Choi, J. Y. Jung, and G.-H. Kim, “Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis,” Experimental and Therapeutic Medicine, vol. 8, no. 2, pp. 454–458, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Bratton, D. E. Frigo, H. C. Segar et al., “The organochlorine o,p′-DDT plays a role in coactivator-mediated MAPK crosstalk in MCF-7 breast cancer cells,” Environmental Health Perspectives, vol. 120, no. 9, pp. 1291–1296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Payne, M. Scholze, and A. Kortenkamp, “Mixtures of four organochlorines enhance human breast cancer cell proliferation,” Environmental Health Perspectives, vol. 109, no. 4, pp. 391–397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. G. D. Charles, C. Gennings, B. Tornesi et al., “Analysis of the interaction of phytoestrogens and synthetic chemicals: an in vitro/in vivo comparison,” Toxicology and Applied Pharmacology, vol. 218, no. 3, pp. 280–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Zhu, L. Li, X. Jin, J. Fang, and D. Zhang, “Er-Xian Decoction, a traditional Chinese herbal formula, intervening early in hypothalamic-pituitary axis of male rats with delayed puberty,” Pharmacognosy Magazine, vol. 10, no. 40, pp. 517–521, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. J. P. Arrebola, R. Ocaña-Riola, A. L. Arrebola-Moreno et al., “Associations of accumulated exposure to persistent organic pollutants with serum lipids and obesity in an adult cohort from Southern Spain,” Environmental Pollution, vol. 195, pp. 9–15, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-B. Ye, A.-L. Chen, W. Lu et al., “Daidzein and genistein fail to improve glycemic control and insulin sensitivity in Chinese women with impaired glucose regulation: a double-blind, randomized, placebo-controlled trial,” Molecular Nutrition and Food Research, vol. 59, no. 2, pp. 240–249, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Zang, K. Igarashi, and C. Yu, “Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet,” Bioscience, Biotechnology, and Biochemistry, vol. 79, no. 1, pp. 117–123, 2015. View at Publisher · View at Google Scholar
  22. E. Di Consiglio, G. De Angelis, M. E. Traina, E. Urbani, and E. Testai, “Effect of lindane on CYP-mediated steroid hormone metabolism in male mice following in utero exposure,” Journal of Applied Toxicology, vol. 29, no. 8, pp. 648–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D.-J. Huang, S.-Y. Wang, and H.-C. Chen, “Effects of the endocrine disrupter chemicals chlordane and lindane on the male green neon shrimp (Neocaridina denticulata),” Chemosphere, vol. 57, no. 11, pp. 1621–1627, 2004. View at Publisher · View at Google Scholar · View at Scopus