Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 7478219, 11 pages
http://dx.doi.org/10.1155/2016/7478219
Research Article

HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

1Software College of Northeastern University, Shenyang, Liaoning 110819, China
2Department of Radiology, Chinese PLA General Hospital, Shenyang 110015, China

Received 4 September 2016; Revised 18 November 2016; Accepted 8 December 2016

Academic Editor: Enzo Terreno

Copyright © 2016 Qingjiao Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Pizer, E. P. Amburn, J. D. Austin et al., “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, & Image Processing, vol. 39, no. 3, pp. 355–368, 1987. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Vani and K. V. M. Prashanth, “Color image enhancement techniques in Wireless Capsule Endoscopy,” in Proceedings of the IEEE International Conference on Trends in Automation, Communications and Computing Technology (I-TACT '15), vol. 1, pp. 1–6, Bangalore, India, December 2015. View at Publisher · View at Google Scholar
  3. H. Cao, L. Tian, J. Liu, H. Wang, and S. Feng, “Color image enhancement using power-constraint histogram equalization for AMOLED,” in Proceedings of the IEEE 11th International Conference on ASIC (ASICON '15), pp. 1–4, IEEE, Chengdu, China, November 2015. View at Publisher · View at Google Scholar
  4. N. M. Kwok, G. Fang, and H. Y. Shi, “Color enhancement for images from digital camera using a transformation-free approach,” in Proceedings of the 9th International Conference on Sensing Technology (ICST '15), pp. 168–172, IEEE, Auckland, New Zealand, December 2015. View at Publisher · View at Google Scholar
  5. S. D. Nikam and R. U. Yawale, “Color image enhancement using daubechies wavelet transform and HIS color model,” in Proceedings of the International Conference on Industrial Instrumentation and Control (ICIC '15), pp. 1323–1327, IEEE, Pune, India, May 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. L. G. Villanueva, G. M. Callicó, F. Tobajas et al., “Medical diagnosis improvement through image quality enhancement based on super-resolution,” in Proceedings of the 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD '10), pp. 259–262, IEEE, Lille, France, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Sun, F. Li, and Q. Zhang, “The applications of improved retinex algorithm for X-ray medical image enhancement,” in Proceedings of the International Conference on Computer Science and Service System (CSSS '12), pp. 1655–1658, IEEE, Nanjing, China, August 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Zhang, D. Sun, P. Yan, H. Zhao, and Z. Li, “A LDCT image contrast enhancement algorithm based on single-scale retinex theory,” in Proceedings of the International Conference on Computational Intelligence for Modelling Control & Automation, pp. 1282–1287, IEEE Computer Society, Vienna, Austria, December 2008. View at Publisher · View at Google Scholar
  9. S. Setty, N. K. Srinath, and M. C. Hanumantharaju, “Development of multiscale retinex algorithm for medical image enhancement based on multi-rate sampling,” in Proceedings of the International Conference on Signal Processing Image Processing & Pattern Recognition, pp. 145–150, 2013.
  10. J. Mccann, “Lessons learned from mondrians applied to real images and color gamuts,” in Proceedings of the Color and Imaging Conference, vol. 8, pp. 1–8, 1999.
  11. B. V. Funt, F. Ciurea, and J. J. McCann, “Retinex in Matlab,” in Proceedings of the Color and Imaging Conference, pp. 112–121, Scottsdale, Ariz, USA, November 2000.
  12. K. Kim, J. Bae, and J. Kim, “Natural hdr image tone mapping based on retinex,” IEEE Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1807–1814, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Kuang, G. M. Johnson, and M. D. Fairchild, “iCAM06: a refined image appearance model for HDR image rendering,” Journal of Visual Communication & Image Representation, vol. 18, no. 5, pp. 406–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M.-L. Song, H.-Q. Wang, C. Chen, X.-Q. Ye, and W.-K. Gu, “Tone mapping for high dynamic range image using a probabilistic model,” Journal of Software, vol. 20, no. 3, pp. 734–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Branchitta, M. Diani, G. Corsini, and M. Romagnoli, “New technique for the visualization of high dynamic range infrared images,” Optical Engineering, vol. 48, no. 9, Article ID 096401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Zuo, “Display and detail enhancement for high-dynamic-range infrared images,” Optical Engineering, vol. 50, no. 12, Article ID 127401, pp. 895–900, 2011. View at Publisher · View at Google Scholar
  17. K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397–1409, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Liu and D. Zhao, “Detail enhancement for high-dynamic-range infrared images based on guided image filter,” Infrared Physics & Technology, vol. 67, pp. 138–147, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Li, R. Huang, Z. Ding et al., “A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI,” IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2007–2016, 2011. View at Google Scholar
  20. C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magnetic Resonance Imaging, vol. 32, no. 7, pp. 913–923, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Vahadane, T. Peng, A. Sethi et al., “Structure-preserving color normalization and sparse stain separation for histological images,” IEEE Transactions on Medical Imaging, vol. 35, no. 8, pp. 1962–1971, 2016. View at Publisher · View at Google Scholar
  22. E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Computer Graphics & Applications, vol. 21, no. 5, pp. 34–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613–627, 1995. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. E. Zhang, H. Yang, and M. Xu, “A novel tone mapping method for high dynamic range image by incorporating edge-preserving filter into method based on retinex,” Applied Mathematics & Information Sciences, vol. 9, no. 1, pp. 411–417, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Macenko, M. Niethammer, J. S. Marron et al., “A method for normalizing histology slides for quantitative analysis,” in Proceedings of the IEEE International Conference on Symposium on Biomedical Imaging: From Nano To Macro, pp. 1107–1110, IEEE Press, 2009.
  26. T. Mitsunaga and S. K. Nayar, “Radiometric self calibration,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 1374, Fort Collins, Colo, USA, June 1999. View at Publisher · View at Google Scholar
  27. F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 257–266, 2002. View at Google Scholar
  28. D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE Transactions on Image Processing, vol. 6, no. 3, pp. 451–462, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Transactions on Image Processing, vol. 6, no. 7, pp. 965–976, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Transactions on Consumer Electronics, vol. 45, no. 1, pp. 68–75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. S.-D. Chen and A. R. Ramli, “Minimum mean brightness error bi-histogram equalization in contrast enhancement,” IEEE Transactions on Consumer Electronics, vol. 49, no. 4, pp. 1310–1319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. S.-D. Chen and A. R. Ramli, “Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation,” IEEE Transactions on Consumer Electronics, vol. 49, no. 4, pp. 1301–1309, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. K. S. Sim, C. P. Tso, and Y. Y. Tan, “Recursive sub-image histogram equalization applied to gray scale images,” Pattern Recognition Letters, vol. 28, no. 10, pp. 1209–1221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. V. L. Jaya and R. Gopikakumari, “IEM: a new image enhancement metric for contrast and sharpness measurements,” International Journal of Computer Applications, vol. 79, no. 9, pp. 1–9, 2013. View at Publisher · View at Google Scholar
  35. S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Transactions on Image Processing, vol. 10, no. 3, pp. 367–382, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  36. M. Braiki, A. Benzinou, K. Nasreddine, S. Labidi, and N. Hymery, “Segmentation of dendritic cells from microscopic images using mathematical morphology,” in Proceedings of the 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP '16), pp. 282–287, Monastir, Tunisia, March 2016. View at Publisher · View at Google Scholar
  37. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945. View at Publisher · View at Google Scholar
  38. P. Jaccard, “The distribution of the flora in the alpine zone,” New Phytologist, vol. 11, no. 2, pp. 37–50, 1912. View at Publisher · View at Google Scholar