Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016 (2016), Article ID 9732780, 20 pages
http://dx.doi.org/10.1155/2016/9732780
Review Article

Zebrafish: A Versatile Animal Model for Fertility Research

1Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
2School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
3Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
4Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
5Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
6Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand

Received 10 December 2015; Accepted 20 June 2016

Academic Editor: Young-Mi Lee

Copyright © 2016 Jing Ying Hoo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. O. Darrow and W. A. Harris, “Characterization and development of courtship in zebrafish, Danio rerio,” Zebrafish, vol. 1, no. 1, pp. 40–45, 2004. View at Publisher · View at Google Scholar
  2. C. Zhao, X. Wang, Y. Zhao et al., “A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors,” PLoS ONE, vol. 6, no. 7, Article ID e21768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Howe, M. D. Clark, C. F. Torroja et al., “The zebrafish reference genome sequence and its relationship to the human genome,” Nature, vol. 496, no. 7446, pp. 498–503, 2013. View at Google Scholar
  4. E. E. Davis, S. Frangakis, and N. Katsanis, “Interpreting human genetic variation with in vivo zebrafish assays,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1842, no. 10, pp. 1960–1970, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. R. E. Broughton, J. E. Milam, and B. A. Roe, “The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA,” Genome Research, vol. 11, no. 11, pp. 1958–1967, 2001. View at Google Scholar · View at Scopus
  6. G. Golling, A. Amsterdam, Z. Sun et al., “Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development,” Nature Genetics, vol. 31, no. 2, pp. 135–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. A. Hortopan, M. T. Dinday, and S. C. Baraban, “Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish,” The Journal of Neuroscience, vol. 30, no. 41, pp. 13718–13728, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Hollert, S. Keiter, N. König, M. Rudolf, M. Ulrich, and T. Braunbeck, “A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos,” Journal of Soils and Sediments, vol. 3, no. 3, pp. 197–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. T. Peterson, S. Y. Shaw, T. A. Peterson et al., “Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation,” Nature Biotechnology, vol. 22, no. 5, pp. 595–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. V. Hallare, T. Kosmehl, T. Schulze, H. Hollert, H.-R. Köhler, and R. Triebskorn, “Assessing contamination levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos,” Science of the Total Environment, vol. 347, no. 1–3, pp. 254–271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Homburg, A. Eshel, J. Kilborn, J. Adams, and H. S. Jacobs, “Combined luteinizing hormone releasing hormone analogue and exogenous gonadotrophins for the treatment of infertility associated with polycystic ovaries,” Human Reproduction, vol. 5, no. 1, pp. 32–35, 1990. View at Google Scholar · View at Scopus
  12. D. S. Guzick, S. A. Carson, C. Coutifaris et al., “Efficacy of superovulation and intrauterine insemination in the treatment of infertility,” The New England Journal of Medicine, vol. 340, no. 3, pp. 177–183, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Turchi, “Prevalence, definition, and classification of infertility,” in Clinical Management of Male Infertility, pp. 5–11, Springer, Berlin, Germany, 2015. View at Google Scholar
  14. O. Lee, A. Takesono, M. Tada, C. R. Tyler, and T. Kudoh, “Biosensor zebrafish provide new insights into potential health effects of environmental estrogens,” Environmental Health Perspectives, vol. 120, no. 7, pp. 990–996, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Hou, L. Li, T. Xue, M. Long, Y. Su, and N. Wu, “Damage and recovery of the ovary in female zebrafish i.p.-injected with MC-LR,” Aquatic Toxicology, vol. 155, pp. 110–118, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Zhang, S.-W. Lau, L. Zhang, and W. Ge, “Disruption of zebrafish follicle-stimulating hormone receptor (fshr) but not luteinizing hormone receptor (lhcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males,” Endocrinology, vol. 156, no. 10, pp. 3747–3762, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Bassi, V. André, F. Marelli et al., “The zebrafish: an emerging animal model for investigating the hypothalamic regulation of reproduction,” Minerva Endocrinologica, vol. 41, no. 2, pp. 250–265, 2016. View at Google Scholar
  18. J.-H. He, J.-M. Gao, C.-J. Huang, and C.-Q. Li, “Zebrafish models for assessing developmental and reproductive toxicity,” Neurotoxicology and Teratology, vol. 42, pp. 35–42, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Akhter, R. Kumagai, S. R. Roy et al., “Generation of transparent zebrafish with fluorescent ovaries: a living visible model for reproductive biology,” Zebrafish, vol. 13, no. 3, pp. 155–160, 2016. View at Publisher · View at Google Scholar
  20. M. Laan, H. Richmond, C. He, and R. K. Campbell, “Zebrafish as a model for vertebrate reproduction: characterization of the first functional zebrafish (Danio rerio) gonadotropin receptor,” General and Comparative Endocrinology, vol. 125, no. 3, pp. 349–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Blanton and J. L. Specker, “The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction,” Critical Reviews in Toxicology, vol. 37, no. 1-2, pp. 97–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Rodríguez-Marí, C. Wilson, T. A. Titus et al., “Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish,” PLoS Genetics, vol. 7, no. 3, Article ID e1001357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Chu, J. Li, Y. Liu, W. Hu, and C. H. K. Cheng, “Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction,” Molecular Endocrinology, vol. 28, no. 11, pp. 1785–1795, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Spence, G. Gerlach, C. Lawrence, and C. Smith, “The behaviour and ecology of the zebrafish, Danio rerio,” Biological Reviews, vol. 83, no. 1, pp. 13–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Kashimada and P. Koopman, “Sry: the master switch in mammalian sex determination,” Development, vol. 137, no. 23, pp. 3921–3930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. P. Piprek, “Molecular and cellular machinery of gonadal differentiation in mammals,” International Journal of Developmental Biology, vol. 54, no. 5, pp. 779–786, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Uchida, M. Yamashita, T. Kitano, and T. Iguchi, “An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal,” Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol. 137, no. 1, pp. 11–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. H. H. Shang, R. M. K. Yu, and R. S. S. Wu, “Hypoxia affects sex differentiation and development leading to a male-dominated population in zebrafish (Danio rerio),” Environmental Science and Technology, vol. 40, no. 9, pp. 3118–3122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Anderson, A. Marí, I. Braasch et al., “Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics,” PLoS ONE, vol. 7, no. 7, article e40701, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Wilson, S. K. High, B. M. McCluskey et al., “Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains,” Genetics, vol. 198, no. 3, pp. 1291–1308, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. P. De Santa Barbara, N. Bonneaud, B. Boizet et al., “Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6653–6665, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Lourenço, R. Brauner, M. Rybczyńska, C. Nihoul-Fékété, K. McElreavey, and A. Bashamboo, “Loss-of-function mutation in GATA4 causes anomalies of human testicular development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1597–1602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Barrionuevo and G. Scherer, “SOX E genes: SOX9 and SOX8 in mammalian testis development,” The International Journal of Biochemistry & Cell Biology, vol. 42, no. 3, pp. 433–436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Rodríguez-Marí, Y.-L. Yan, R. A. BreMiller, C. Wilson, C. Cañestro, and J. H. Postlethwait, “Characterization and expression pattern of zebrafish anti-Müllerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development,” Gene Expression Patterns, vol. 5, no. 5, pp. 655–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. X. G. Wang and L. Orban, “Anti-Müllerian hormone and 11 β-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males,” Developmental Dynamics, vol. 236, no. 5, pp. 1329–1338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. J. Groh, V. J. Nesatyy, H. Segner, R. I. L. Eggen, and M. J.-F. Suter, “Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio),” Fish Physiology and Biochemistry, vol. 37, no. 3, pp. 619–647, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. S. Skaar, R. H. Nóbrega, A. Magaraki, L. C. Olsen, R. W. Schulz, and R. Male, “Proteolytically activated, recombinant anti-Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures,” Endocrinology, vol. 152, no. 9, pp. 3527–3540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Van den Hurk and J. W. Resink, “Male reproductive system as sex pheromone producer in teleost fish,” Journal of Experimental Zoology, vol. 261, no. 2, pp. 204–213, 1992. View at Publisher · View at Google Scholar
  39. K. R. Siegfried and C. Nüsslein-Volhard, “Germ line control of female sex determination in zebrafish,” Developmental Biology, vol. 324, no. 2, pp. 277–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. W. Schulz, R. H. Nóbrega, R. D. V. S. Morais, P. P. De Waal, L. R. França, and J. Bogerd, “Endocrine and paracrine regulation of zebrafish spermatogenesis: the Sertoli cell perspective,” Animal Reproduction, vol. 12, no. 1, pp. 81–87, 2015. View at Google Scholar · View at Scopus
  41. J. R. Kemadjou Njiwa, P. Müller, and R. Klein, “Variations of sperm release in three batches of zebrafish,” Journal of Fish Biology, vol. 64, no. 2, pp. 475–482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Gupta and M. C. Mullins, “Dissection of organs from the adult zebrafish,” Journal of Visualized Experiments, no. 37, article e1717, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. L. Menke, J. M. Spitsbergen, A. P. M. Wolterbeek, and R. A. Woutersen, “Normal anatomy and histology of the adult zebrafish,” Toxicologic Pathology, vol. 39, no. 5, pp. 759–775, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Gerlach, “Pheromonal regulation of reproductive success in female zebrafish: female suppression and male enhancement,” Animal Behaviour, vol. 72, no. 5, pp. 1119–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. T. DeFalco and B. Capel, “Gonad morphogenesis in vertebrates: divergent means to a convergent end,” Annual Review of Cell and Developmental Biology, vol. 25, pp. 457–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Ö. Çakıcı and S. İ. Üçüncü, “Oocyte development in the zebrafish, Danio rerio (Teleostei: Cyprinidae),” Journal of Fisheries & Aquatic Sciences, vol. 24, no. 1-2, pp. 137–141, 2007. View at Google Scholar
  47. E. Clelland and C. Peng, “Endocrine/paracrine control of zebrafish ovarian development,” Molecular and Cellular Endocrinology, vol. 312, no. 1-2, pp. 42–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. van den Hurk, W. G. E. J. Schoonen, G. A. van Zoelen, and J. G. D. Lambert, “The biosynthesis of steroid glucuronides in the testis of the zebrafish, Brachydanio rerio, and their pheromonal function as ovulation inducers,” General and Comparative Endocrinology, vol. 68, no. 2, pp. 179–188, 1987. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Hutter, D. J. Penn, S. Magee, and S. M. Zala, “Reproductive behaviour of wild zebrafish (Danio rerio) in large tanks,” Behaviour, vol. 147, no. 5-6, pp. 641–660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Nasiadka and M. D. Clark, “Zebrafish breeding in the laboratory environment,” ILAR Journal, vol. 53, no. 2, pp. 161–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Uusi-Heikkilä, A. Kuparinen, C. Wolter, T. Meinelt, and R. Arlinghaus, “Paternal body size affects reproductive success in laboratory-held zebrafish (Danio rerio),” Environmental Biology of Fishes, vol. 93, no. 4, pp. 461–474, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. X. Liu, K. Ji, A. Jo, H.-B. Moon, and K. Choi, “Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio),” Aquatic Toxicology, vol. 134-135, pp. 104–111, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Deng, C. Liu, L. Yu, and B. Zhou, “Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction,” Toxicology and Applied Pharmacology, vol. 243, no. 1, pp. 87–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. G. Larsen, K. B. Hansen, P. G. Henriksen, and E. Baatrup, “Male zebrafish (Danio rerio) courtship behaviour resists the feminising effects of 17α-ethinyloestradiol—morphological sexual characteristics do not,” Aquatic Toxicology, vol. 87, no. 4, pp. 234–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Spence, W. C. Jordan, and C. Smith, “Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio,” Frontiers in Zoology, vol. 3, no. 1, article 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Blanco-Vives and F. J. Sánchez-Vázquez, “Synchronisation to light and feeding time of circadian rhythms of spawning and locomotor activity in zebrafish,” Physiology and Behavior, vol. 98, no. 3, pp. 268–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Lawrence, “The husbandry of zebrafish (Danio rerio): a review,” Aquaculture, vol. 269, no. 1–4, pp. 1–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. E. M. Goolish, R. Evans, K. Okutake, and R. Max, “Chamber volume requirements for reproduction of the zebrafish Danio rerio,” The Progressive Fish-Culturist, vol. 60, no. 2, pp. 127–132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. A. K. Sessa, R. White, Y. Houvras et al., “The effect of a depth gradient on the mating behavior, oviposition site preference, and embryo production in the zebrafish, Danio rerio,” Zebrafish, vol. 5, no. 4, pp. 335–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Lawrence, J. Best, A. James, and K. Maloney, “The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio),” Aquaculture, vol. 368-369, pp. 103–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. R. L. Hill Jr. and D. M. Janz, “Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success,” Aquatic Toxicology, vol. 63, no. 4, pp. 417–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. L. Markovich, N. V. Rizzuto, and P. B. Brown, “Diet affects spawning in zebrafish,” Zebrafish, vol. 4, no. 1, pp. 69–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Geffroy and O. Simon, “Effects of a Spirulina platensis-based diet on zebrafish female reproductive performance and larval survival rate,” Cybium, vol. 37, no. 1-2, pp. 31–38, 2013. View at Google Scholar · View at Scopus
  64. P. Diogo, G. Martins, P. Gavaia et al., “Assessment of nutritional supplementation in phospholipids on the reproductive performance of zebrafish, Danio rerio (Hamilton, 1822),” Journal of Applied Ichthyology, vol. 31, supplement 1, pp. 3–9, 2015. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Jaya-Ram, M.-K. Kuah, P.-S. Lim, S. Kolkovski, and A. C. Shu-Chien, “Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio,” Aquaculture, vol. 277, no. 3-4, pp. 275–281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. L. T. Paul, L. A. Fowler, R. J. Barry, and S. A. Watts, “Evaluation of Moringa oleifera as a dietary supplement on growth and reproductive performance in zebrafish,” Journal of Nutritional Ecology and Food Research, vol. 1, no. 4, pp. 322–328, 2013. View at Publisher · View at Google Scholar
  67. S. Uusi-Heikkilä, C. Wolter, T. Meinelt, and R. Arlinghaus, “Size-dependent reproductive success of wild zebrafish Danio rerio in the laboratory,” Journal of Fish Biology, vol. 77, no. 3, pp. 552–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Uusi-Heikkilä, L. Böckenhoff, C. Wolter, and R. Arlinghaus, “Differential allocation by female zebrafish (Danio rerio) to different-sized males—an example in a fish species lacking parental care,” PLoS ONE, vol. 7, no. 10, Article ID e48317, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Kitevski and M. Pyron, “Female zebrafish (Danio rerio) do not prefer mutant longfin males,” Journal of Freshwater Ecology, vol. 18, no. 3, pp. 501–502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Gumm, J. L. Snekser, and M. K. Iovine, “Fin-mutant female zebrafish (Danio rerio) exhibit differences in association preferences for male fin length,” Behavioural Processes, vol. 80, no. 1, pp. 35–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Spence and C. Smith, “Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio,” Animal Behaviour, vol. 69, no. 6, pp. 1317–1323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. T. O. Ariyomo and P. J. Watt, “The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish,” Animal Behaviour, vol. 83, no. 1, pp. 41–46, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Pyron, “Female preferences and male-male interactions in zebrafish (Danio rerio),” Canadian Journal of Zoology, vol. 81, no. 1, pp. 122–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Gerlach and N. Lysiak, “Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching,” Animal Behaviour, vol. 71, no. 6, pp. 1371–1377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Liu, X. Zhang, J. Deng et al., “Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish,” Environmental Science and Technology, vol. 45, no. 2, pp. 769–775, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Maalhagh, A. S. Jahromi, A. Yusefi et al., “Effects of prepubertal acute immobilization stress on serum kisspeptin level and testis histology in rats,” Pakistan Journal of Biological Sciences, vol. 19, no. 1, pp. 43–48, 2016. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Vaudry and J. Y. Seong, “Neuropeptide GPCRs in neuroendocrinology,” Frontiers in Endocrinology, vol. 5, article 41, 2014. View at Publisher · View at Google Scholar · View at Scopus
  78. K.-C. Liu, S.-W. Lin, and W. Ge, “Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane,” Endocrinology, vol. 152, no. 11, pp. 4418–4430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Fontaine, P. Affaticati, K. Yamamoto et al., “Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes,” Endocrinology, vol. 154, no. 2, pp. 807–818, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Messager, E. E. Chatzidaki, D. Ma et al., “Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 5, pp. 1761–1766, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. X. D. De Tassigny and W. H. Colledge, “The role of Kisspeptin signaling in reproduction,” Physiology, vol. 25, no. 4, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J. T. Smith, S. M. Popa, D. K. Clifton, G. E. Hoffman, and R. A. Steiner, “Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge,” The Journal of Neuroscience, vol. 26, no. 25, pp. 6687–6694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. M. N. Lehman, C. M. Merkley, L. M. Coolen, and R. L. Goodman, “Anatomy of the kisspeptin neural network in mammals,” Brain Research, vol. 1364, pp. 90–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. L. Robertson, D. K. Clifton, H. O. De La Iglesia, R. A. Steiner, and A. S. Kauffman, “Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge,” Endocrinology, vol. 150, no. 8, pp. 3664–3671, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Servili, Y. Le Page, J. Leprince et al., “Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish,” Endocrinology, vol. 152, no. 4, pp. 1527–1540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Ogawa, K. W. Ng, P. N. Ramadasan, F. M. Nathan, and I. S. Parhar, “Habenular Kiss1 neurons modulate the serotonergic system in the brain of zebrafish,” Endocrinology, vol. 153, no. 5, pp. 2398–2407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Song, X. Duan, J. Chen, W. Huang, Z. Zhu, and W. Hu, “The distribution of kisspeptin (Kiss)1- and Kiss2-positive neurones and their connections with gonadotrophin-releasing hormone-3 neurones in the zebrafish brain,” Journal of Neuroendocrinology, vol. 27, no. 3, pp. 198–211, 2015. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Kitahashi, S. Ogawa, and I. S. Parhar, “Cloning and expression of kiss2 in the zebrafish and medaka,” Endocrinology, vol. 150, no. 2, pp. 821–831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. S. J. Semaan, K. P. Tolson, and A. S. Kauffman, “The development of kisspeptin circuits in the Mammalian brain,” in Kisspeptin Signaling in Reproductive Biology, pp. 221–252, Springer, Berlin, Germany, 2013. View at Google Scholar
  90. I. R. Thompson and U. B. Kaiser, “GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression,” Molecular and Cellular Endocrinology, vol. 385, no. 1-2, pp. 28–35, 2014. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Yahalom, A. Chen, N. Ben-Aroya et al., “The gonadotropin-releasing hormone family of neuropeptides in the brain of human, bovine and rat: identification of a third isoform,” FEBS Letters, vol. 463, no. 3, pp. 289–294, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Gopinath, L. A. Tseng, and K. E. Whitlock, “Temporal and spatial expression of gonadotropin releasing hormone (GnRH) in the brain of developing zebrafish (Danio rerio),” Gene Expression Patterns, vol. 4, no. 1, pp. 65–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. O. Palevitch, K. Kight, E. Abraham, S. Wray, Y. Zohar, and Y. Gothilf, “Ontogeny of the GnRH systems in zebrafish brain: in situ hybridization and promoter-reporter expression analyses in intact animals,” Cell and Tissue Research, vol. 327, no. 2, pp. 313–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. D.-K. Kim, E. B. Cho, M. J. Moon et al., “Revisiting the evolution of gonadotropin-releasing hormones and their receptors in vertebrates: secrets hidden in genomes,” General and Comparative Endocrinology, vol. 170, no. 1, pp. 68–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Golan, E. Zelinger, Y. Zohar, and B. Levavi-Sivan, “Architecture of GnRH-gonadotrope-vasculature reveals a dual mode of gonadotropin regulation in fish,” Endocrinology, vol. 156, no. 11, pp. 4163–4173, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. C. M. Howles, “Role of LH and FSH in ovarian function,” Molecular and Cellular Endocrinology, vol. 161, no. 1-2, pp. 25–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. E. S. Clelland and S. P. Kelly, “Tight junction proteins in zebrafish ovarian follicles: stage specific mRNA abundance and response to 17β-estradiol, human chorionic gonadotropin, and maturation inducing hormone,” General and Comparative Endocrinology, vol. 168, no. 3, pp. 388–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. S.-K. Poon, W.-K. So, X. Yu, L. Liu, and W. Ge, “Characterization of inhibin α subunit (inha) in the zebrafish: evidence for a potential feedback loop between the pituitary and ovary,” Reproduction, vol. 138, no. 4, pp. 709–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. M. Guzmán, J. A. Luckenbach, Y. Yamamoto, and P. Swanson, “Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon,” PLoS ONE, vol. 9, no. 12, Article ID e114176, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Bogerd, J. C. M. Granneman, R. W. Schulz, and H. F. Vischer, “Fish FSH receptors bind LH: how to make the human FSH receptor to be more fishy?” General and Comparative Endocrinology, vol. 142, no. 1-2, pp. 34–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. C. A. Lessman, “Oocyte maturation: converting the zebrafish oocyte to the fertilizable egg,” General and Comparative Endocrinology, vol. 161, no. 1, pp. 53–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Golan, J. Biran, and B. Levavi-Sivan, “A novel model for development, organization, and function of gonadotropes in fish pituitary,” Frontiers in Endocrinology, vol. 5, article 182, 2014. View at Publisher · View at Google Scholar · View at Scopus
  103. Á. García-López, H. De Jonge, R. H. Nóbrega et al., “Studies in zebrafish reveal unusual cellular expression patterns of gonadotropin receptor messenger ribonucleic acids in the testis and unexpected functional differentiation of the gonadotropins,” Endocrinology, vol. 151, no. 5, pp. 2349–2360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. A. G. Doufas and G. Mastorakos, “The hypothalamic-pituitary-thyroid axis and the female reproductive system,” Annals of the New York Academy of Sciences, vol. 900, pp. 65–76, 2000. View at Google Scholar · View at Scopus
  105. M. T. Rae, O. Gubbay, A. Kostogiannou, D. Price, H. O. D. Critchley, and S. G. Hillier, “Thyroid hormone signaling in human ovarian surface epithelial cells,” The Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 1, pp. 322–327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Bodó, B. Kany, E. Gáspár et al., “Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones,” Endocrinology, vol. 151, no. 4, pp. 1633–1642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. P. R. Manna, J. Kero, M. Tena-Sempere, P. Pakarinen, D. M. Stocco, and I. T. Huhtaniemi, “Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function,” Endocrinology, vol. 142, no. 1, pp. 319–331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Tohei, “Studies on the functional relationship between thyroid, adrenal and gonadal hormones,” Journal of Reproduction and Development, vol. 50, no. 1, pp. 9–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. L. C. Hall, E. P. Salazar, S. R. Kane, and N. Liu, “Effects of thyroid hormones on human breast cancer cell proliferation,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 109, no. 1-2, pp. 57–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. E. Krajewska-Kulak and P. Sengupta, “Thyroid function in male infertility,” Frontiers in Endocrinology, vol. 4, article 174, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Poppe, D. Glinoer, A. van Steirteghem et al., “Thyroid dysfunction and autoimmunity in infertile women,” Thyroid, vol. 12, no. 11, pp. 997–1001, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Rijntjes, A. T. Wientjes, H. J. M. Swarts, D. G. De Rooij, and K. J. Teerds, “Dietary-induced hyperthyroidism marginally affects neonatal testicular development,” Journal of Andrology, vol. 29, no. 6, pp. 643–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Unuane, H. Tournaye, B. Velkeniers, and K. Poppe, “Endocrine disorders & female infertility,” Best Practice & Research: Clinical Endocrinology & Metabolism, vol. 25, no. 6, pp. 861–873, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. J. V. Joshi, S. D. Bhandarkar, M. Chadha, D. Balaiah, and R. Shah, “Menstrual irregularities and lactation failure may precede thyroid dysfunction or goitre,” Journal of Postgraduate Medicine, vol. 39, no. 3, pp. 137–141, 1993. View at Google Scholar · View at Scopus
  115. G. E. Krassas, N. Pontikides, Th. Kaltsas, Ph. Papadopoulu, and M. Batrinos, “Menstrual disturbances in thyrotoxicosis,” Clinical Endocrinology, vol. 40, no. 5, pp. 641–644, 1994. View at Publisher · View at Google Scholar · View at Scopus
  116. R. W. Hudson and A. L. Edwards, “Testicular function in hyperthyroidism,” Journal of Andrology, vol. 13, no. 2, pp. 117–124, 1992. View at Google Scholar · View at Scopus
  117. J. J. C. Hernández, J. M. M. García, and L. C. García Diez, “Primary hypothyroidism and human spermatogenesis,” Systems Biology in Reproductive Medicine, vol. 25, no. 1, pp. 21–27, 1990. View at Publisher · View at Google Scholar · View at Scopus
  118. G. E. Krassas, F. Papadopoulou, K. Tziomalos, T. Zeginiadou, and N. Pontikides, “Hypothyroidism has an adverse effect on human spermatogenesis: a prospective, controlled study,” Thyroid, vol. 18, no. 12, pp. 1255–1259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. P. Porazzi, D. Calebiro, F. Benato, N. Tiso, and L. Persani, “Thyroid gland development and function in the zebrafish model,” Molecular and Cellular Endocrinology, vol. 312, no. 1-2, pp. 14–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Wendl, K. Lun, M. Mione et al., “Pax2.1 is required for the development of thyroid follicles in zebrafish,” Development, vol. 129, no. 15, pp. 3751–3760, 2002. View at Google Scholar · View at Scopus
  121. F. Schmidt and T. Braunbeck, “Alterations along the hypothalamic-pituitary-thyroid axis of the zebrafish (Danio rerio) after exposure to propylthiouracil,” Journal of Thyroid Research, vol. 2011, Article ID 376243, 17 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Mukhi, L. Torres, and R. Patiño, “Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios,” General and Comparative Endocrinology, vol. 150, no. 3, pp. 486–494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. N. K. Arambepola, D. Bunick, and P. S. Cooke, “Thyroid hormone effects on androgen receptor messenger RNA expression in rat Sertoli and peritubular cells,” Journal of Endocrinology, vol. 156, no. 1, pp. 43–50, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Cardone, F. Angelini, T. Esposito, R. Comitato, and B. Varriale, “The expression of androgen receptor messenger RNA is regulated by tri-iodothyronine in lizard testis,” Journal of Steroid Biochemistry and Molecular Biology, vol. 72, no. 3-4, pp. 133–141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  125. S. M. L. C. Mendis-Handagama and H. B. S. Ariyaratne, “Leydig cells, thyroid hormones and steroidogenesis,” Indian Journal of Experimental Biology, vol. 43, no. 11, pp. 939–962, 2005. View at Google Scholar · View at Scopus
  126. R. D. V. S. Morais, R. H. Nóbrega, N. E. Gómez-González et al., “Thyroid hormone stimulates the proliferation of Sertoli cells and single type A spermatogonia in adult zebrafish (Danio rerio) testis,” Endocrinology, vol. 154, no. 11, pp. 4365–4376, 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Z. Khan, L. He, and X. Zhuang, “The emerging role of GPR50 receptor in brain,” Biomedicine & Pharmacotherapy, vol. 78, pp. 121–128, 2016. View at Publisher · View at Google Scholar · View at Scopus
  128. E. A. Mead and D. K. Sarkar, “Fetal alcohol spectrum disorders and their transmission through genetic and epigenetic mechanisms,” Frontiers in Genetics, vol. 5, article 154, 2014. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Tsigos and G. P. Chrousos, “Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress,” Journal of Psychosomatic Research, vol. 53, no. 4, pp. 865–871, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Mouthaan, M. Sijbrandij, J. S. K. Luitse, J. C. Goslings, B. P. R. Gersons, and M. Olff, “The role of acute cortisol and DHEAS in predicting acute and chronic PTSD symptoms,” Psychoneuroendocrinology, vol. 45, pp. 179–186, 2014. View at Publisher · View at Google Scholar · View at Scopus
  131. M. L. M. Fuzzen, G. Van Der Kraak, and N. J. Bernier, “Stirring up new ideas about the regulation of the hypothalamic-pituitary- interrenal axis in zebrafish (Danio rerio),” Zebrafish, vol. 7, no. 4, pp. 349–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. D. Alsop and M. Vijayan, “The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event,” General and Comparative Endocrinology, vol. 161, no. 1, pp. 62–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. D. Alsop and M. M. Vijayan, “Molecular programming of the corticosteroid stress axis during zebrafish development,” Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, vol. 153, no. 1, pp. 49–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. D. Alsop and M. M. Vijayan, “Development of the corticosteroid stress axis and receptor expression in zebrafish,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 294, no. 3, pp. R711–R719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. L. F. Chan, T. R. Webb, T.-T. Chung et al., “MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 15, pp. 6146–6151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. P. M. Hinkle and J. A. Sebag, “Structure and function of the melanocortin2 receptor accessory protein (MRAP),” Molecular and Cellular Endocrinology, vol. 300, no. 1-2, pp. 25–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. M. J. Agulleiro, S. Roy, E. Sánchez, S. Puchol, N. Gallo-Payet, and J. M. Cerdá-Reverter, “Role of melanocortin receptor accessory proteins in the function of zebrafish melanocortin receptor type 2,” Molecular and Cellular Endocrinology, vol. 320, no. 1-2, pp. 145–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. M. J. M. Schaaf, D. Champagne, I. H. C. Van Laanen et al., “Discovery of a functional glucocorticoid receptor β-isoform in zebrafish,” Endocrinology, vol. 149, no. 4, pp. 1591–1598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. S. A. Cruz, C.-H. Lin, P.-L. Chao, and P.-P. Hwang, “Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (Danio rerio),” PLoS ONE, vol. 8, no. 10, Article ID e77997, 2013. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Chatzopoulou, U. Roy, A. H. Meijer, A. Alia, H. P. Spaink, and M. J. M. Schaaf, “Transcriptional and metabolic effects of glucocorticoid receptor α and β signaling in zebrafish,” Endocrinology, vol. 156, no. 5, pp. 1757–1769, 2015. View at Publisher · View at Google Scholar · View at Scopus
  141. R. A. Saleh, A. Agarwal, E. A. Nada et al., “Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility,” Fertility and Sterility, vol. 79, no. 3, pp. 1597–1605, 2003. View at Publisher · View at Google Scholar · View at Scopus
  142. F. R. Parikh, S. G. Nadkarni, S. A. Kamat, N. Naik, S. B. Soonawala, and R. M. Parikh, “Genital tuberculosis—a major pelvic factor causing infertility in Indian women,” Fertility and Sterility, vol. 67, no. 3, pp. 497–500, 1997. View at Publisher · View at Google Scholar · View at Scopus
  143. J. S. E. Laven, B. Imani, M. J. C. Eijkemans, and B. C. J. M. Fauser, “New approach to polycystic ovary syndrome and other forms of anovulatory infertility,” Obstetrical & Gynecological Survey, vol. 57, no. 11, pp. 755–767, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. M. J. Jasper, K. P. Tremellen, and S. A. Robertson, “Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue,” Molecular Human Reproduction, vol. 12, no. 5, pp. 301–308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. V. R. Chidrawar, H. R. Chitme, K. N. Patel et al., “Effects of Cynodon dactylon on stress-induced infertility in male rats,” Journal of Young Pharmacists, vol. 3, no. 1, pp. 26–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. C. D. Lynch, R. Sundaram, J. M. Maisog, A. M. Sweeney, and G. M. Buck Louis, “Preconception stress increases the risk of infertility: results from a couple-based prospective cohort study—the LIFE study,” Human Reproduction, vol. 29, no. 5, pp. 1067–1075, 2014. View at Publisher · View at Google Scholar · View at Scopus
  147. C. A. Snijder, E. Te velde, N. Roeleveld, and A. Burdorf, “Occupational exposure to chemical substances and time to pregnancy: a systematic review,” Human Reproduction Update, vol. 18, no. 3, Article ID dms005, pp. 284–300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Zafar, S. A. M. A. S. Eqani, N. Bostan et al., “Toxic metals signature in the human seminal plasma of Pakistani population and their potential role in male infertility,” Environmental Geochemistry and Health, vol. 37, no. 3, pp. 515–527, 2015. View at Publisher · View at Google Scholar · View at Scopus
  149. M. Al-Griw, S. A. Al-Azreg, S. A. Al-Azreg et al., “Fertility and reproductive outcome in mice following Trichloroethane (TCE) exposure,” American Journal of Life Science Researches, vol. 3, no. 4, pp. 293–303, 2015. View at Google Scholar
  150. D. Alsop, J. S. Ings, and M. M. Vijayan, “Adrenocorticotropic hormone suppresses gonadotropin-stimulated estradiol release from zebrafish ovarian follicles,” PLoS ONE, vol. 4, no. 7, Article ID e6463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. M. L. Sousa, F. Figueiredo, C. Pinheiro et al., “Morphological and molecular effects of cortisol and ACTH on zebrafish stage I and II Follicles,” Reproduction, vol. 150, no. 5, pp. 429–436, 2015. View at Publisher · View at Google Scholar · View at Scopus
  152. K. Volkova, N. Reyhanian Caspillo, T. Porseryd, S. Hallgren, P. Dinnétz, and I. Porsch-Hällström, “Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny,” Hormones and Behavior, vol. 73, pp. 30–38, 2015. View at Publisher · View at Google Scholar · View at Scopus
  153. F. X. Han, A. Banin, Y. Su et al., “Industrial age anthropogenic inputs of heavy metals into the pedosphere,” Naturwissenschaften, vol. 89, no. 11, pp. 497–504, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. W. Wuttke, H. Jarry, and D. Seidlova-Wuttke, “Definition, classification and mechanism of action of endocrine disrupting chemicals,” Hormones, vol. 9, no. 1, pp. 9–15, 2010. View at Google Scholar · View at Scopus
  155. A. Fucic, M. Gamulin, Z. Ferencic et al., “Environmental exposure to xenoestrogens and oestrogen related cancers: reproductive system, breast, lung, kidney, pancreas, and brain,” Environmental Health, vol. 11, supplement 1, article S8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. T. Arora, A. Mehta, V. Joshi et al., “Substitute of animals in drug research: an approach towards fulfillment of 4R's,” Indian Journal of Pharmaceutical Sciences, vol. 73, no. 1, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. J. P. Myers, R. T. Zoeller, and F. S. vom Saal, “A clash of old and new scientific concepts in toxicity, with important implications for public health,” Environmental Health Perspectives, vol. 117, no. 11, pp. 1652–1655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. C. Parng, W. L. Seng, C. Semino, and P. McGrath, “Zebrafish: a preclinical model for drug screening,” Assay and Drug Development Technologies, vol. 1, no. 1, pp. 41–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  159. O. Carnevali, L. Tosti, C. Speciale, C. Peng, Y. Zhu, and F. Maradonna, “DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis,” PLoS ONE, vol. 5, no. 4, Article ID e10201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. G. R. Heck, C. A. CaJacob, and S. R. Padgette, “Discovery, development, and commercialization of Roundup Ready® crops,” in Plant Biotechnology 2002 and Beyond, pp. 139–142, Springer, Berlin, Germany, 2003. View at Google Scholar
  161. F. M. Lopes, A. S. Varela Junior, C. D. Corcini et al., “Effect of glyphosate on the sperm quality of zebrafish Danio rerio,” Aquatic Toxicology, vol. 155, pp. 322–326, 2014. View at Publisher · View at Google Scholar · View at Scopus
  162. A. B. Soso, L. J. G. Barcellos, M. J. Ranzani-Paiva et al., “Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female Jundiá (Rhamdia quelen),” Environmental Toxicology and Pharmacology, vol. 23, no. 3, pp. 308–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. B. K. Dutra, F. A. Fernandes, D. M. Failace, and G. T. Oliveira, “Effect of roundup® (glyphosate formulation) in the energy metabolism and reproductive traits of Hyalella castroi (Crustacea, Amphipoda, Dogielinotidae),” Ecotoxicology, vol. 20, no. 1, pp. 255–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. T. M. Uren Webster, L. V. Laing, H. Florance, and E. M. Santos, “Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio),” Environmental Science & Technology, vol. 48, no. 2, pp. 1271–1279, 2014. View at Publisher · View at Google Scholar · View at Scopus
  165. C. Gasnier, C. Dumont, N. Benachour, E. Clair, M.-C. Chagnon, and G.-E. Séralini, “Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines,” Toxicology, vol. 262, no. 3, pp. 184–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. R. M. Romano, M. A. Romano, M. M. Bernardi, P. V. Furtado, and C. A. Oliveira, “Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology,” Archives of Toxicology, vol. 84, no. 4, pp. 309–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. M. A. Romano, R. M. Romano, L. D. Santos et al., “Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression,” Archives of Toxicology, vol. 86, no. 4, pp. 663–673, 2012. View at Publisher · View at Google Scholar
  168. S. Richard, S. Moslemi, H. Sipahutar, N. Benachour, and G.-E. Seralini, “Differential effects of glyphosate and roundup on human placental cells and aromatase,” Environmental Health Perspectives, vol. 113, no. 6, pp. 716–720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. N. Benachour, H. Sipahutar, S. Moslemi, C. Gasnier, C. Travert, and G. E. Séralini, “Time- and dose-dependent effects of roundup on human embryonic and placental cells,” Archives of Environmental Contamination and Toxicology, vol. 53, no. 1, pp. 126–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. B. Winnick and E. M. Dzialowski, “The effects of glyphosate based herbicides on chick embryo morphology during development,” The Federal of American Societiesfor Experimental Biology Journal, vol. 27, p. 874.12, 2013. View at Google Scholar
  171. R. A. Relyea, “Growth and survival of five amphibian species exposed to combinations of pesticides,” Environmental Toxicology and Chemistry, vol. 23, no. 7, pp. 1737–1742, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. B.-H. Hwang and M.-R. Lee, “Solid-phase microextraction for organochlorine pesticide residues analysis in Chinese herbal formulations,” Journal of Chromatography A, vol. 898, no. 2, pp. 245–256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  173. M. E. DeLorenzo, L. A. Taylor, S. A. Lund, P. L. Pennington, E. D. Strozier, and M. H. Fulton, “Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton,” Archives of Environmental Contamination and Toxicology, vol. 42, no. 2, pp. 173–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Weber, C. J. Halsall, D. Muir et al., “Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic,” Science of the Total Environment, vol. 408, no. 15, pp. 2966–2984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. K. A. Stanley, L. R. Curtis, S. L. Massey Simonich, and R. L. Tanguay, “Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development,” Aquatic Toxicology, vol. 95, no. 4, pp. 355–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. Z. Han, S. Jiao, D. Kong, Z. Shan, and X. Zhang, “Effects of β-endosulfan on the growth and reproduction of zebrafish (Danio rerio),” Environmental Toxicology and Chemistry, vol. 30, no. 11, pp. 2525–2531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. W. S. Chow, W. K.-L. Chan, and K. M. Chan, “Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A,” Journal of Applied Toxicology, vol. 33, no. 7, pp. 670–678, 2013. View at Publisher · View at Google Scholar · View at Scopus
  178. A. Balasubramani and T. J. Pandian, “Endosulfan suppresses growth and reproduction in zebrafish,” Current Science, vol. 94, no. 7, pp. 883–890, 2008. View at Google Scholar · View at Scopus
  179. B. Shao, L. Zhu, M. Dong et al., “DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio),” Ecotoxicology, vol. 21, no. 5, pp. 1533–1540, 2012. View at Publisher · View at Google Scholar · View at Scopus
  180. M. Dong, L. Zhu, B. Shao et al., “The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers,” Ecotoxicology and Environmental Safety, vol. 92, pp. 1–9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  181. Y. M. Velasco-Santamaría, R. D. Handy, and K. A. Sloman, “Endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 153, no. 4, pp. 372–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  182. M. C. F. Toledo and C. M. Jonsson, “Bioaccumulation and elimination of endosulfan in zebra fish (Brachydanio rerio),” Pesticide Science, vol. 36, no. 3, pp. 207–211, 1992. View at Publisher · View at Google Scholar
  183. C. M. Jonsson and M. C. F. Toledo, “Acute toxicity of endosulfan to the fish Hyphessobrycon bifasciatus and Brachydanio rerio,” Archives of Environmental Contamination and Toxicology, vol. 24, no. 2, pp. 151–155, 1993. View at Publisher · View at Google Scholar · View at Scopus
  184. A. Sechman, P. Antos, D. Katarzyńska, A. Grzegorzewska, D. Wojtysiak, and A. Hrabia, “Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on secretion of steroids and STAR, HSD3B and CYP19A1 mRNA expression in chicken ovarian follicles,” Toxicology Letters, vol. 225, no. 2, pp. 264–274, 2014. View at Publisher · View at Google Scholar · View at Scopus
  185. T. C. K. Heiden, J. Spitsbergen, W. Heideman, and R. E. Peterson, “Persistent adverse effects on health and reproduction caused by exposure of zebrafish to 2,3,7,8-tetrachlorodibenzo-p-dioxin during early development and gonad differentiation,” Toxicological Sciences, vol. 109, no. 1, pp. 75–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. W. Z. Wu, W. Li, Y. Xu, and J. W. Wang, “Long-term toxic impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the reproduction, sexual differentiation, and development of different life stages of Gobiocypris rarus and Daphnia magna,” Ecotoxicology and Environmental Safety, vol. 48, no. 3, pp. 293–300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  187. J. P. Giesy, P. D. Jones, K. Kannan, J. L. Newsted, D. E. Tillitt, and L. L. Williams, “Effects of chronic dietary exposure to environmentally relevant concentrations to 2,3,7,8-tetrachlorodibenzo-p-dioxin on survival, growth, reproduction and biochemical responses of female rainbow trout (Oncorhynchus mykiss),” Aquatic Toxicology, vol. 59, no. 1-2, pp. 35–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  188. T. K. Heiden, M. J. Carvan, and R. J. Hutz, “Inhibition of follicular development, vitellogenesis, and serum 17β-estradiol concentrations in zebrafish following chronic, sublethal dietary exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Toxicological Sciences, vol. 90, no. 2, pp. 490–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  189. T. C. K. Heiden, C. A. Struble, M. L. Rise, M. J. Hessner, R. J. Hutz, and M. J. Carvan III, “Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: insights into TCDD-induced endocrine disruption and reproductive toxicity,” Reproductive Toxicology, vol. 25, no. 1, pp. 47–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. R. Wannemacher, A. Rebstock, E. Kulzer, D. Schrenk, and K. W. Bock, “Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on reproduction and oogenesis in zebrafish (Brachydanio rerio),” Chemosphere, vol. 24, no. 9, pp. 1361–1368, 1992. View at Publisher · View at Google Scholar · View at Scopus
  191. T. K. Heiden, R. J. Hutz, and M. J. Carvan, “Accumulation, tissue distribution, and maternal transfer of dietary 2,3,7,8,-tetrachlorodibenzo-p-dioxin: impacts on reproductive success of zebrafish,” Toxicological Sciences, vol. 87, no. 2, pp. 497–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  192. T. R. Baker, R. E. Peterson, and W. Heideman, “Early dioxin exposure causes toxic effects in adult zebrafish,” Toxicological Sciences, vol. 135, no. 1, pp. 241–250, 2013. View at Publisher · View at Google Scholar · View at Scopus
  193. A. K. Dasmahapatra, B. A. B. Wimpee, A. L. Trewin, C. F. Wimpee, J. K. Ghorai, and R. J. Hutz, “Demonstration of 2,3,7,8-tetrachlorodibenzo-p-dioxin attenuation of P450 steroidogenic enzyme mRNAs in rat granulosa cell in vitro by competitive reverse transcriptase-polymerase chain reaction assay,” Molecular and Cellular Endocrinology, vol. 164, no. 1-2, pp. 5–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  194. N. H. Fukuzawa, S. Ohsako, Q. Wu et al., “Testicular cytochrome P450scc and LHR as possible targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the mouse,” Molecular and Cellular Endocrinology, vol. 221, no. 1-2, pp. 87–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  195. E. G. Notch and G. D. Mayer, “Efficacy of pharmacological estrogen receptor antagonists in blocking activation of zebrafish estrogen receptors,” General and Comparative Endocrinology, vol. 173, no. 1, pp. 183–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  196. S. Magdouli, R. Daghrir, S. K. Brar, P. Drogui, and R. D. Tyagi, “Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review,” Journal of Environmental Management, vol. 127, pp. 36–49, 2013. View at Publisher · View at Google Scholar · View at Scopus
  197. Y. Zhan, J. Sun, Y. Luo et al., “Estimating emissions and environmental fate of di-(2-ethylhexyl) phthalate in Yangtze River Delta, China: application of inverse modeling,” Environmental Science & Technology, vol. 50, no. 5, pp. 2450–2458, 2016. View at Publisher · View at Google Scholar
  198. T. M. Uren-Webster, C. Lewis, A. L. Filby, G. C. Paull, and E. M. Santos, “Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish,” Aquatic Toxicology, vol. 99, no. 3, pp. 360–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. B. Corradetti, A. Stronati, L. Tosti, G. Manicardi, O. Carnevali, and D. Bizzaro, “Bis-(2-ethylexhyl) phthalate impairs spermatogenesis in zebrafish (Danio rerio),” Reproductive Biology, vol. 13, no. 3, pp. 195–202, 2013. View at Publisher · View at Google Scholar · View at Scopus
  200. Y. Kazeto, R. Goto-Kazeto, and J. M. Trant, “Membrane-bound progestin receptors in channel catfish and zebrafish ovary: changes in gene expression associated with the reproductive cycles and hormonal reagents,” General and Comparative Endocrinology, vol. 142, no. 1-2, pp. 204–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  201. Y. Ma, J. Han, Y. Guo et al., “Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol,” Aquatic Toxicology, vol. 106-107, pp. 173–181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  202. C. Liu, L. Yu, J. Deng, P. K. S. Lam, R. S. S. Wu, and B. Zhou, “Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic-pituitary-gonadal (HPG) axis of zebrafish,” Aquatic Toxicology, vol. 93, no. 2-3, pp. 131–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  203. M. Naderi, M. Y. L. Wong, and F. Gholami, “Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults,” Aquatic Toxicology, vol. 148, pp. 195–203, 2014. View at Publisher · View at Google Scholar · View at Scopus
  204. S. Örn, P. L. Andersson, L. Förlin, M. Tysklind, and L. Norrgren, “The impact on reproduction of an orally administered mixture of selected PCBs in zebrafish (Danio rerio),” Archives of Environmental Contamination and Toxicology, vol. 35, no. 1, pp. 52–57, 1998. View at Publisher · View at Google Scholar · View at Scopus
  205. I. Figa-Talamanca, V. Dell'Orco, A. Pupi et al., “Fertility and semen quality of workers exposed to high temperatures in the ceramics industry,” Reproductive Toxicology, vol. 6, no. 6, pp. 517–523, 1992. View at Publisher · View at Google Scholar · View at Scopus
  206. J.-M. Mur, P. Wild, R. Rapp, J.-P. Vautrin, and J.-P. Coulon, “Demographic evaluation of the fertility of aluminium industry workers: influence of exposure to heat and static magnetic fields,” Human Reproduction, vol. 13, no. 7, pp. 2016–2019, 1998. View at Publisher · View at Google Scholar · View at Scopus
  207. Á. Vargas, E. Bustos-Obregón, and R. Hartley, “Effects of hypoxia on epididymal sperm parameters and protective role of ibuprofen and melatonin,” Biological Research, vol. 44, no. 2, pp. 161–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  208. R. S. S. Wu, B. S. Zhou, D. J. Randall, N. Y. S. Woo, and P. K. S. Lam, “Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction,” Environmental Science & Technology, vol. 37, no. 6, pp. 1137–1141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. C. A. Landry, S. L. Steele, S. Manning, and A. O. Cheek, “Long term hypoxia suppresses reproductive capacity in the estuarine fish, Fundulus grandis,” Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, vol. 148, no. 2, pp. 317–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. P. Thomas, M. S. Rahman, I. A. Khan, and J. A. Kummer, “Widespread endocrine disruption and reproductive impairment in an estuarine fish population exposed to seasonal hypoxia,” Proceedings of the Royal Society of London B: Biological Sciences, vol. 274, no. 1626, pp. 2693–2701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. R. M. K. Yu, D. L. H. Chu, T.-F. Tan et al., “Leptin-mediated modulation of steroidogenic gene expression in hypoxic zebrafish embryos: implications for the disruption of sex steroids,” Environmental Science & Technology, vol. 46, no. 16, pp. 9112–9119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  212. D. Martinovic, D. L. Villeneuve, M. D. Kahl, L. S. Blake, J. D. Brodin, and G. T. Ankley, “Hypoxia alters gene expression in the gonads of zebrafish (Danio rerio),” Aquatic Toxicology, vol. 95, no. 4, pp. 258–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  213. K. H. Lo, M. N. Y. Hui, R. M. K. Yu, R. S. S. Wu, and S. H. Cheng, “Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio) embryos,” PLoS ONE, vol. 6, no. 9, Article ID e24540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  214. L. Bujan, M. Daudin, J.-P. Charlet, P. Thonneau, and R. Mieusset, “Increase in scrotal temperature in car drivers,” Human Reproduction, vol. 15, no. 6, pp. 1355–1357, 2000. View at Publisher · View at Google Scholar · View at Scopus
  215. Y. Lue, A. P. S. Hikim, C. Wang, M. Im, A. Leung, and R. S. Swerdloff, “Testicular heat exposure enhances the suppression of spermatogenesis by testosterone in rats: the ‘two-hit’ approach to male contraceptive development,” Endocrinology, vol. 141, no. 4, pp. 1414–1424, 2000. View at Publisher · View at Google Scholar · View at Scopus
  216. E. K. Sheiner, E. Sheiner, R. D. Hammel, G. Potashnik, and R. Carel, “Effect of occupational exposures on male fertility: literature review,” Industrial Health, vol. 41, no. 2, pp. 55–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  217. K. D. Poss, A. Nechiporuk, K. F. Stringer, C. Lee, and M. T. Keating, “Germ cell aneuploidy in zebrafish with mutations in the mitotic checkpoint gene mps1,” Genes & Development, vol. 18, no. 13, pp. 1527–1532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  218. C. Pieau, M. Dorizzi, and N. Richard-Mercier, “Temperature-dependent sex determination and gonadal differentiation in reptiles,” in Genes and Mechanisms in Vertebrate Sex Determination, pp. 117–141, Springer, Berlin, Germany, 2001. View at Google Scholar
  219. A. Luzio, D. Santos, A. A. Fontaínhas-Fernandes, S. M. Monteiro, and A. M. Coimbra, “Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development,” Aquatic Toxicology, vol. 174, pp. 22–35, 2016. View at Publisher · View at Google Scholar · View at Scopus
  220. N. Villamizar, L. Ribas, F. Piferrer, L. M. Vera, and F. J. Sánchez-Vázquez, “Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish,” PLoS ONE, vol. 7, no. 12, Article ID e52153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  221. M. Hagedorn and V. L. Carter, “Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success,” PLoS ONE, vol. 6, no. 6, Article ID e21059, 2011. View at Publisher · View at Google Scholar · View at Scopus
  222. A. Nagabhushana and R. K. Mishra, “Finding clues to the riddle of sex determination in zebrafish,” Journal of Biosciences, vol. 41, no. 1, pp. 145–155, 2016. View at Publisher · View at Google Scholar · View at Scopus
  223. N. P. Quinn and J. D. Ackerman, “The effect of near-bed turbulence on sperm dilution and fertilization success of broadcast-spawning bivalves,” Limnology and Oceanography: Fluids and Environments, vol. 1, no. 1, pp. 176–193, 2011. View at Publisher · View at Google Scholar
  224. N. P. Quinn and J. D. Ackerman, “Biological and ecological mechanisms for overcoming sperm limitation in invasive dreissenid mussels,” Aquatic Sciences, vol. 74, no. 3, pp. 415–425, 2012. View at Publisher · View at Google Scholar · View at Scopus
  225. M. Reichard, S. C. Le Comber, and C. Smith, “Sneaking from a female perspective,” Animal Behaviour, vol. 74, no. 4, pp. 679–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  226. R. L. Norman, “Effects of corticotropin-releasing hormone on luteinizing hormone, testosterone, and cortisol secretion in intact male rhesus macaques,” Biology of Reproduction, vol. 49, no. 1, pp. 148–153, 1993. View at Publisher · View at Google Scholar · View at Scopus
  227. K.-I. Maeda and H. Tsukamura, “Neuroendocrine mechanism mediating fasting-induced suppression of luteinizing hormone secretion in female rats,” Acta Neurobiologiae Experimentalis, vol. 56, no. 3, pp. 787–796, 1996. View at Google Scholar · View at Scopus
  228. H. F. Erden, I. H. Zwain, H. Asakura, and S. S. C. Yen, “Corticotropin-releasing factor inhibits luteinizing hormone-stimulated P450c17 gene expression and androgen production by isolated thecal cells of human ovarian follicles,” The Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 2, pp. 448–452, 1998. View at Publisher · View at Google Scholar · View at Scopus
  229. J. B. Phogat, R. F. Smith, and H. Dobson, “Effect of adrenocorticotrophic hormone (ACTH1124) on ovine pituitary gland responsiveness to exogenous pulsatile GnRH and oestradiol-induced LH release in vivo,” Animal Reproduction Science, vol. 55, no. 3-4, pp. 193–203, 1999. View at Publisher · View at Google Scholar · View at Scopus
  230. M. Klimek, W. Pabian, B. Tomaszewska, and J. Kolodziejczyk, “Levels of plasma ACTH in men from infertile couples,” Neuroendocrinology Letters, vol. 26, no. 4, pp. 347–350, 2005. View at Google Scholar · View at Scopus
  231. L. Ren, X. Li, Q. Weng et al., “Effects of acute restraint stress on sperm motility and secretion of pituitary, adrenocortical and gonadal hormones in adult male rats,” Journal of Veterinary Medical Science, vol. 72, no. 11, pp. 1501–1506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  232. T. E. Orr and D. R. Mann, “Role of glucocorticoids in the stress-induced suppression of testicular steroidogenesis in adult male rats,” Hormones and Behavior, vol. 26, no. 3, pp. 350–363, 1992. View at Publisher · View at Google Scholar · View at Scopus
  233. G. P. Chrousos, D. J. Torpy, and P. W. Gold, “Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications,” Annals of Internal Medicine, vol. 129, no. 3, pp. 229–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  234. E. D. Kirby, A. C. Geraghty, T. Ubuka, G. E. Bentley, and D. Kaufer, “Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11324–11329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. R. Patiño, M. R. Wainscott, E. I. Cruz-Li et al., “Effects of ammonium perchlorate on the reproductive performance and thyroid follicle histology of zebrafish,” Environmental Toxicology and Chemistry, vol. 22, no. 5, pp. 1115–1121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  236. S. Mukhi and R. Patiño, “Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish,” Toxicological Sciences, vol. 96, no. 2, pp. 246–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  237. K. Ji, S. Hong, Y. Kho, and K. Choi, “Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish,” Environmental Science & Technology, vol. 47, no. 15, pp. 8793–8800, 2013. View at Publisher · View at Google Scholar · View at Scopus
  238. R. V. Kuiper, E. J. Van Den Brandhof, P. E. G. Leonards, L. T. M. Van Der Ven, P. W. Wester, and J. G. Vos, “Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test,” Archives of Toxicology, vol. 81, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  239. A. N. Haldén, J. R. Nyholm, P. L. Andersson, H. Holbech, and L. Norrgren, “Oral exposure of adult zebrafish (Danio rerio) to 2,4,6-tribromophenol affects reproduction,” Aquatic Toxicology, vol. 100, no. 1, pp. 30–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  240. H. C. Reinardy, J. R. Syrett, R. A. Jeffree, T. B. Henry, and A. N. Jha, “Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes,” Aquatic Toxicology, vol. 126, pp. 224–230, 2013. View at Publisher · View at Google Scholar · View at Scopus
  241. F. Brion, C. R. Tyler, X. Palazzi et al., “Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio),” Aquatic Toxicology, vol. 68, no. 3, pp. 193–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  242. J. P. Nash, D. E. Kime, L. T. M. Van der Ven et al., “Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish,” Environmental Health Perspectives, vol. 112, no. 17, pp. 1725–1733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  243. C. Schäfers, M. Teigeler, A. Wenzel, G. Maack, M. Fenske, and H. Segner, “Concentration- and time-dependent effects of the synthetic estrogen, 17α-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio,” Journal of Toxicology and Environmental Health, Part A: Current Issues, vol. 70, no. 9, pp. 768–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  244. C. Liu, J. Deng, L. Yu, M. Ramesh, and B. Zhou, “Endocrine disruption and reproductive impairment in zebrafish by exposure to 8:2 fluorotelomer alcohol,” Aquatic Toxicology, vol. 96, no. 1, pp. 70–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  245. M. Galus, J. Jeyaranjaan, E. Smith, H. Li, C. Metcalfe, and J. Y. Wilson, “Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish,” Aquatic Toxicology, vol. 132-133, pp. 212–222, 2013. View at Publisher · View at Google Scholar · View at Scopus
  246. M. Galus, N. Kirischian, S. Higgins et al., “Chronic, low concentration exposure to pharmaceuticals impacts multiple organ systems in zebrafish,” Aquatic Toxicology, vol. 132-133, pp. 200–211, 2013. View at Publisher · View at Google Scholar · View at Scopus
  247. K. Ji, X. Liu, S. Lee et al., “Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis, and reproduction of zebrafish,” Journal of Hazardous Materials, vol. 254-255, no. 1, pp. 242–251, 2013. View at Publisher · View at Google Scholar · View at Scopus
  248. M. Galus, S. Rangarajan, A. Lai, L. Shaya, S. Balshine, and J. Y. Wilson, “Effects of chronic, parental pharmaceutical exposure on zebrafish (Danio rerio) offspring,” Aquatic Toxicology, vol. 151, pp. 124–134, 2014. View at Publisher · View at Google Scholar · View at Scopus
  249. R. Nourizadeh-Lillabadi, J. L. Lyche, C. Almaas et al., “Transcriptional regulation in liver and testis associated with developmental and reproductive effects in male zebrafish exposed to natural mixtures of persistent organic pollutants (POP),” Journal of Toxicology and Environmental Health, Part A: Current Issues, vol. 72, no. 3-4, pp. 112–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  250. T. Daouk, T. Larcher, F. Roupsard et al., “Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability,” Aquatic Toxicology, vol. 105, no. 3-4, pp. 270–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  251. R. H. M. M. Schreurs, J. Legler, E. Artola-Garicano et al., “In vitro and in vivo antiestrogenic effects of polycyclic musks in zebrafish,” Environmental Science & Technology, vol. 38, no. 4, pp. 997–1002, 2004. View at Publisher · View at Google Scholar · View at Scopus