Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2016, Article ID 9737920, 20 pages
http://dx.doi.org/10.1155/2016/9737920
Review Article

Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans

1UCB BioPharma SPRL, Chemin du Foriest, R9 Building, 1420 Braine-l’Alleud, Belgium
2AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, USA
3Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR 72079, USA
4Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
5Drug Safety Consultant, Macclesfield, Cheshire SK11, UK
6Sanofi, Bâtiment C. Bernard, 13 Quai Jules Guesdes, Zone B, BP14, 94403 Vitry-sur-Seine Cedex, France
7U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
8Novartis Pharma AG, Klybeckstrasse 141, 4057 Basel, Switzerland
9Hoffmann La-Roche Inc., 4000 Basel, Switzerland
10School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
11Ipsen Biosciences Inc., 650 E Kendall Street, Cambridge, MA 02142, USA
12Institut de Recherches Internationales Servier (IRIS), 50 rue Carnot, 92284 Suresnes Cedex, France
13Pfizer R&D, Drug Safety Research and Development, Eastern Point Road, Groton, CT 06340, USA
14Genentech, 1 DNA Way, South San Francisco, CA 94080, USA

Received 29 April 2016; Accepted 22 June 2016

Academic Editor: Hwa-Liang Leo

Copyright © 2016 Franck A. Atienzar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Stevens and T. K. Baker, “The future of drug safety testing: expanding the view and narrowing the focus,” Drug Discovery Today, vol. 14, no. 3-4, pp. 162–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. S. MacDonald and R. T. Robertson, “Toxicity testing in the 21st century: a view from the pharmaceutical industry,” Toxicological Sciences, vol. 110, no. 1, pp. 40–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Van Tonder, V. Steenkamp, and M. Gulumian, “Pre-clinical assessment of the potential intrinsic hepatotoxicity of candidate drugs,” in New Insights into Toxicity and Drug Testing, S. Gowder, Ed., vol. 28, chapter 1, pp. 3–28, InTech, 2013. View at Google Scholar
  4. G. Ostapowicz, R. J. Fontana, F. V. Schioødt et al., “Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States,” Annals of Internal Medicine, vol. 137, no. 12, pp. 947–954, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Andrade, R. Camargo, M. I. Lucena, and R. González-Grande, “Causality assessment in drug-induced hepatotoxicity,” Expert Opinion on Drug Safety, vol. 3, no. 4, pp. 329–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. N. Bell and N. Chalasani, “Epidemiology of idiosyncratic drug-induced liver injury,” Seminars in Liver Disease, vol. 29, no. 4, pp. 337–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. J. Zimmerman, “Drug-induced liver disease,” Clinics in Liver Disease, vol. 4, no. 1, pp. 73–96, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Kaplowitz, “Idiosyncratic drug hepatotoxicity,” Nature Reviews Drug Discovery, vol. 4, no. 6, pp. 489–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Russmann, G. A. Kullak-Ublick, and I. Grattagliano, “Current concepts of mechanisms in drug-induced hepatotoxicity,” Current Medicinal Chemistry, vol. 16, no. 23, pp. 3041–3053, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Greer, J. Barber, J. Eakins, and J. G. Kenna, “Cell based approaches for evaluation of drug-induced liver injury,” Toxicology, vol. 268, no. 3, pp. 125–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Li and P. J. Uetrecht, “Danger hypothesis applied to idiosyncratic drug reactions,” in Adverse Drug Reactions, Handbook of Experimental Pharmacology, J. Uetrecht, Ed., pp. 493–509, Springer, New York, NY, USA, 2010. View at Google Scholar
  12. M. D. Leise, J. J. Poterucha, and J. A. Talwalkar, “Drug-induced liver injury,” Mayo Clinic Proceedings, vol. 89, no. 1, pp. 95–106, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. A. P. Li, “An integrated, multidisciplinary approach for drug safety assessment,” Drug Discovery Today, vol. 9, no. 16, pp. 687–693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. G. Ulrich, “Idiosyncratic toxicity: a convergence of risk factors,” Annual Review of Medicine, vol. 58, pp. 17–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. W. M. Lee, “Drug-induced hepatotoxicity,” The New England Journal of Medicine, vol. 349, no. 5, pp. 474–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Guillouzo and C. Guguen-Guillouzo, “Evolving concepts in liver tissue modeling and implications for in vitro toxicology,” Expert Opinion on Drug Metabolism and Toxicology, vol. 4, no. 10, pp. 1279–1294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. U. A. Boelsterli and P. L. K. Lim, “Mitochondrial abnormalities—a link to idiosyncratic drug hepatotoxicity?” Toxicology and Applied Pharmacology, vol. 220, no. 1, pp. 92–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Dykens and Y. Will, “The significance of mitochondrial toxicity testing in drug development,” Drug Discovery Today, vol. 12, no. 17-18, pp. 777–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Morgan, M. Trauner, C. J. van Staden et al., “Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development,” Toxicological Sciences, vol. 118, no. 2, pp. 485–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. K. Park, A. Boobis, S. Clarke et al., “Managing the challenge of chemically reactive metabolites in drug development,” Nature Reviews Drug Discovery, vol. 10, no. 4, pp. 292–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Godoy, N. J. Hewitt, U. Albrecht et al., “Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME,” Archives of Toxicology, vol. 87, no. 8, pp. 1315–1530, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Lammert, E. Bjornsson, A. Niklasson, and N. Chalasani, “Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events,” Hepatology, vol. 51, no. 2, pp. 615–620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Lammert, S. Einarsson, C. Saha, A. Niklasson, E. Bjornsson, and N. Chalasani, “Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals,” Hepatology, vol. 47, no. 6, pp. 2003–2009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. I. Lucena, R. J. Andrade, N. Kaplowitz et al., “Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex,” Hepatology, vol. 49, no. 6, pp. 2001–2009, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Chalasani and E. Björnsson, “Risk factors for idiosyncratic drug-induced liver injury,” Gastroenterology, vol. 138, no. 7, pp. 2246–2259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. David and J. P. Hamilton, “Drug-induced liver injury,” Gastroenterology and Hepatology Reviews, vol. 6, pp. 73–80, 2010. View at Google Scholar
  27. H. Olson, G. Betton, J. Stritar, and D. Robinson, “The predictivity of the toxicity of pharmaceuticals in humans from animal data—an interim assessment,” Toxicology Letters, vol. 102-103, pp. 535–538, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Lu, S. Einhorn, L. Venkatarangan et al., “Morphological and functional characterization and assessment of iPSC-derived hepatocytes for in vitro toxicity testing,” Toxicological Sciences, vol. 147, no. 1, Article ID kfv117, pp. 39–54, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Kostadinova, F. Boess, D. Applegate et al., “A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity,” Toxicology and Applied Pharmacology, vol. 268, no. 1, pp. 1–16, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Messner, I. Agarkova, W. Moritz, and J. M. Kelm, “Multi-cell type human liver microtissues for hepatotoxicity testing,” Archives of Toxicology, vol. 87, no. 1, pp. 209–213, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Maschmeyer, A. K. Lorenz, K. Schimek et al., “A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents,” Lab on a Chip, vol. 15, no. 12, pp. 2688–2699, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. L. A. Vernetti, N. Senutovitch, R. Boltz et al., “A human liver microphysiology platform for investigating physiology, drug safety, and disease models,” Experimental Biology and Medicine, vol. 241, no. 1, pp. 101–114, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Guillouzo, A. Corlu, C. Aninat, D. Glaise, F. Morel, and C. Guguen-Guillouzo, “The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics,” Chemico-Biological Interactions, vol. 168, no. 1, pp. 66–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Le Vee, G. Noel, E. Jouan, B. Stieger, and O. Fardel, “Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells,” Toxicology in Vitro, vol. 27, no. 6, pp. 1979–1986, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Itzhaki, L. Maizels, I. Huber et al., “Modelling the long QT syndrome with induced pluripotent stem cells,” Nature, vol. 471, no. 7337, pp. 225–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Lan, A. S. Lee, P. Liang et al., “Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells,” Cell Stem Cell, vol. 12, no. 1, pp. 101–113, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Sun, M. Yazawa, J. Liu et al., “Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy,” Science Translational Medicine, vol. 4, no. 130, Article ID 130ra47, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. R. C. Saumarez, L. Chojnowska, R. Derksen et al., “Sudden death in noncoronary heart disease is associated with delayed paced ventricular activation,” Circulation, vol. 107, no. 20, pp. 2595–2600, 2003. View at Google Scholar · View at Scopus
  39. P. Liang, F. Lan, A. S. Lee et al., “Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity,” Circulation, vol. 127, no. 16, pp. 1677–1691, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. F. C. Richardson, J. A. Engelhardt, and R. R. Bowsher, “Fialuridine accumulates in DNA of dogs, monkeys, and rats following long- term oral administration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 25, pp. 12003–12007, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Honkoop, H. R. Scholte, R. A. De Man, and S. W. Schalm, “Mitochondrial injury. Lessons from the fialuridine trial,” Drug Safety, vol. 17, no. 1, pp. 1–7, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. R. McKenzie, M. W. Fried, R. Sallie et al., “Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B,” The New England Journal of Medicine, vol. 333, no. 17, pp. 1099–1105, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Lebron, L. Liu, S. Kulkarni et al., “Differential effects of FIAU, FIRU and DDC on functional and DNA content endpoints in HepatoPac and Huh-7 cells,” in Proceedings of the 54th Annual Meeting of the Society of Toxicology, abstract 621, San Diego, Calif, USA, March 2015.
  44. H. Olson, G. Betton, D. Robinson et al., “Concordance of the toxicity of pharmaceuticals in humans and in animals,” Regulatory Toxicology and Pharmacology, vol. 32, no. 1, pp. 56–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. J. W. Benbow, J. Aubrecht, M. J. Banker, D. Nettleton, and M. D. Aleo, “Predicting safety toleration of pharmaceutical chemical leads: cytotoxicity correlations to exploratory toxicity studies,” Toxicology Letters, vol. 197, no. 3, pp. 175–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Greene, M. D. Aleo, S. Louise-May, D. A. Price, and Y. Will, “Using an in vitro cytotoxicity assay to aid in compound selection for in vivo safety studies,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 17, pp. 5308–5312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Shah, L. Leung, H. A. Barton et al., “Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays,” Toxicological Sciences, vol. 147, no. 2, Article ID kfv152, pp. 500–514, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. R. A. Thompson, E. M. Isin, Y. Li et al., “In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs,” Chemical Research in Toxicology, vol. 25, no. 8, pp. 1616–1632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Chen, C.-W. Tung, Q. Shi et al., “A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the ‘rule-of-two’ model,” Archives of Toxicology, vol. 88, no. 7, pp. 1439–1449, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. J. R. W. Masters, “Human cancer cell lines: fact and fantasy,” Nature Reviews Molecular Cell Biology, vol. 1, no. 3, pp. 233–236, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Wong, P. Lai, E. Pang, T. Wai-Tong Leung, J. Wan-Yee Lau, and P. James Johnson, “A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping,” Hepatology, vol. 32, no. 5, pp. 1060–1068, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Dove, “The art of culture: developing cell lines,” Science, vol. 346, no. 6212, pp. 1013–1015, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Kmiec, “Cooperation of liver cells in health and disease,” Advances in Anatomy, Embryology and Cell Biology, vol. 161, no. 3–13, pp. 1–151, 2001. View at Google Scholar
  54. R. A. Roberts, P. E. Ganey, C. Ju, L. M. Kamendulis, I. Rusyn, and J. E. Klaunig, “Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis,” Toxicological Sciences, vol. 96, no. 1, pp. 2–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Germano, M. Uteng, F. Pognan, S.-D. Chibout, and A. Wolf, “Determination of liver specific toxicities in rat hepatocytes by high content imaging during 2-week multiple treatment,” Toxicology in Vitro, vol. 30, no. 1, pp. 79–94, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Swift, N. D. Pfeifer, and K. L. R. Brouwer, “Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity,” Drug Metabolism Reviews, vol. 42, no. 3, pp. 446–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. N. I. Kramer, E. Di Consiglio, B. J. Blaauboer, and E. Testai, “Biokinetics in repeated-dosing in vitro drug toxicity studies,” Toxicology in Vitro, vol. 30, no. 1, pp. 217–224, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Martinez, G. I. Nedredal, C. I. Øie et al., “The influence of oxygen tension on the structure and function of isolated liver sinusoidal endothelial cells,” Comparative Hepatology, vol. 7, article 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Balls, “In vitro methods in regulatory toxicology: the crucial significance of validation,” in Toxicology in Transition, G. H. Degen, J. P. Seiler, and P. Bentley, Eds., vol. 17 of Archives of Toxicology, pp. 155–162, 1995. View at Publisher · View at Google Scholar
  60. J. J. Xu, P. V. Henstock, M. C. Dunn, A. R. Smith, J. R. Chabot, and D. de Graaf, “Cellular imaging predictions of clinical drug-induced liver injury,” Toxicological Sciences, vol. 105, no. 1, pp. 97–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. P. J. O'Brien, W. Irwin, D. Diaz et al., “High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening,” Archives of Toxicology, vol. 80, no. 9, pp. 580–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. F. A. Atienzar, E. I. Novik, H. H. Gerets et al., “Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans,” Toxicology and Applied Pharmacology, vol. 275, no. 1, pp. 44–61, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Gustafsson, A. J. Foster, S. Sarda, M. H. Bridgland-Taylor, and J. G. Kenna, “A correlation between the in vitro drug toxicity of drugs to cell lines that express human p450s and their propensity to cause liver injury in humans,” Toxicological Sciences, vol. 137, no. 1, pp. 189–211, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Chen, H. Hong, H. Fang et al., “Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs,” Toxicological Sciences, vol. 136, no. 1, pp. 242–249, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Chen, A. Suzuki, S. Thakkar, K. Yu, C. Hu, and W. Tong, “DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans,” Drug Discovery Today, vol. 21, no. 4, pp. 648–653, 2016. View at Publisher · View at Google Scholar
  66. M. Biour, C. Ben Salem, O. Chazouillères, J.-D. Grangé, L. Serfaty, and R. Poupon, “Drug-induced liver injury; fourteenth updated edition of the bibliographic database of liver injuries and related drugs,” Gastroenterologie Clinique et Biologique, vol. 28, no. 8-9, pp. 720–759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Thompson, “Lack of adequate classification of hepatotoxicants hinders development of predictive in vitro screening assays,” Annual Meeting Abstract Supplement, Society of Toxicology, Abstract no. 2017, 2016.
  68. M. Chen, V. Vijay, Q. Shi, Z. Liu, H. Fang, and W. Tong, “FDA-approved drug labeling for the study of drug-induced liver injury,” Drug Discovery Today, vol. 16, no. 15-16, pp. 697–703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. H. H. J. Gerets, K. Tilmant, B. Gerin et al., “Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins,” Cell Biology and Toxicology, vol. 28, no. 2, pp. 69–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Tolosa, S. Pinto, M. T. Donato et al., “Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs,” Toxicological Sciences, vol. 127, no. 1, pp. 187–198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. S. R. Khetani, C. Kanchagar, O. Ukairo et al., “Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans,” Toxicological Sciences, vol. 132, no. 1, pp. 107–117, 2013. View at Publisher · View at Google Scholar · View at Scopus
  72. H. H. J. Gerets, E. Hanon, M. Cornet et al., “Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: a preliminary study using a multiplexing approach,” Toxicology in Vitro, vol. 23, no. 2, pp. 319–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. S. K. Bopp and T. Lettieri, “Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line,” BMC Pharmacology, vol. 8, article 8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Ullrich, C. Berg, J. G. Hengstler, and D. Runge, “Use of a standardised and validated long-term human hepatocyte culture system for repetitive analyses of drugs: repeated administrations of acetaminophen reduces albumin and urea secretion,” Altex, vol. 24, no. 1, pp. 35–40, 2007. View at Google Scholar · View at Scopus
  75. W. G. E. J. Schoonen, W. M. A. Westerink, J. A. D. M. De Roos, and E. Débiton, “Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake,” Toxicology in Vitro, vol. 19, no. 4, pp. 505–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Nadanaciva, P. Rana, G. C. Beeson et al., “Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform,” Journal of Bioenergetics and Biomembranes, vol. 44, no. 4, pp. 421–437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Nadanaciva, M. D. Aleo, C. J. Strock, D. B. Stedman, H. Wang, and Y. Will, “Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes,” Toxicology and Applied Pharmacology, vol. 272, no. 2, pp. 272–280, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Eakins, C. Bauch, H. Woodhouse et al., “A combined in vitro approach to improve the prediction of mitochondrial toxicants,” Toxicology in Vitro, vol. 34, pp. 161–170, 2016. View at Publisher · View at Google Scholar
  79. K. Tilmant, H. H. J. Gerets, S. Dhalluin et al., “Comparison of a genomic and a multiplex cell imaging approach for the detection of phospholipidosis,” Toxicology in Vitro, vol. 25, no. 7, pp. 1414–1424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Persson, A. F. Løye, M. Jacquet et al., “High-content analysis/screening for predictive toxicology: application to hepatotoxicity and genotoxicity,” Basic and Clinical Pharmacology and Toxicology, vol. 115, no. 1, pp. 18–23, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Uteng, D. Germano, K. K. Balavenkatraman, F. Pognan, and A. Wolf, “High content imaging approaches for in vitro toxicology,” in In Vitro Toxicology Systems, A. Bal-Price and P. Jennings, Eds., Methods in Pharmacology and Toxicology, pp. 377–397, 2014. View at Publisher · View at Google Scholar
  82. M. Porceddu, N. Buron, C. Roussel, G. Labbe, B. Fromenty, and A. Borgne-Sanchez, “Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria,” Toxicological Sciences, vol. 129, no. 2, pp. 332–345, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Schadt, S. Simon, S. Kustermann et al., “Minimizing DILI risk in drug discovery—a screening tool for drug candidates,” Toxicology in Vitro, vol. 30, no. 1, pp. 429–437, 2015. View at Publisher · View at Google Scholar · View at Scopus
  84. O. Ukairo, C. Kanchagar, A. Moore et al., “Long-term stability of primary rat hepatocytes in micropatterned cocultures,” Journal of Biochemical and Molecular Toxicology, vol. 27, no. 3, pp. 204–212, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. L. D. Marroquin, J. Hynes, J. A. Dykens, J. D. Jamieson, and Y. Will, “Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of hepG2 cells to mitochondrial toxicants,” Toxicological Sciences, vol. 97, no. 2, pp. 539–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. V. M. Gohil, S. A. Sheth, R. Nilsson et al., “Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis,” Nature Biotechnology, vol. 28, no. 3, pp. 249–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Yuan, J. Gao, J. Guo et al., “Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes,” PLoS ONE, vol. 9, no. 9, Article ID e107447, 2014. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Sanmartín-Suárez, R. Soto-Otero, I. Sánchez-Sellero, and E. Méndez-Álvarez, “Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants,” Journal of Pharmacological and Toxicological Methods, vol. 63, no. 2, pp. 209–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Jiang, J. E. J. Wolters, S. G. van Breda, J. C. Kleinjans, and T. M. de Kok, “Development of novel tools for the in vitro investigation of drug-induced liver injury,” Expert Opinion on Drug Metabolism & Toxicology, vol. 11, no. 10, pp. 1523–1537, 2015. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Curcio, S. Salerno, G. Barbieri, L. De Bartolo, E. Drioli, and A. Bader, “Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system,” Biomaterials, vol. 28, no. 36, pp. 5487–5497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Glicklis, J. C. Merchuk, and S. Cohen, “Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions,” Biotechnology and Bioengineering, vol. 86, no. 6, pp. 672–680, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Anada, J. Fukuda, Y. Sai, and O. Suzuki, “An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids,” Biomaterials, vol. 33, pp. 8430–8441, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Benesic and A. L. Gerbes, “Drug-induced liver injury and individual cell models,” Digestive Diseases, vol. 33, no. 4, pp. 486–491, 2015. View at Publisher · View at Google Scholar · View at Scopus
  94. S. B. Leite, T. Roosens, A. El Taghdouini et al., “Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro,” Biomaterials, vol. 78, pp. 1–10, 2016. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Roth and T. Singer, “The application of 3D cell models to support drug safety assessment: opportunities & challenges,” Advanced Drug Delivery Reviews, vol. 69-70, pp. 179–189, 2014. View at Publisher · View at Google Scholar · View at Scopus
  96. S. O. Mueller, A. Guillouzo, P. G. Hewitt, and L. Richert, “Drug biokinetic and toxicity assessments in rat and human primary hepatocytes and HepaRG cells within the EU-funded Predict-IV project,” Toxicology in Vitro, vol. 30, no. 1, pp. 19–26, 2015. View at Publisher · View at Google Scholar
  97. C. Goldring, A. Norris, N. Kitteringham et al., “Mechanism-based markers of drug-induced liver injury to improve the physiological relevance and predictivity of in vitro models,” Applied in Vitro Toxicology, vol. 1, no. 3, pp. 175–186, 2015. View at Publisher · View at Google Scholar
  98. S. Takai, S. Oda, K. Tsuneyama, T. Fukami, M. Nakajima, and T. Yokoi, “Establishment of a mouse model for amiodarone-induced liver injury and analyses of its hepatotoxic mechanism,” Journal of Applied Toxicology, vol. 36, no. 1, pp. 35–47, 2016. View at Publisher · View at Google Scholar · View at Scopus
  99. I. G. Metushi, P. Cai, D. Dervovic et al., “Development of a novel mouse model of amodiaquine-induced liver injury with a delayed onset,” Journal of Immunotoxicology, vol. 12, no. 3, pp. 247–260, 2015. View at Publisher · View at Google Scholar · View at Scopus
  100. M. R. McGill, H.-M. Yan, A. Ramachandran, G. J. Murray, D. E. Rollins, and H. Jaeschke, “HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity,” Hepatology, vol. 53, no. 3, pp. 974–982, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Patel, L. M. Cole, R. Bradshaw et al., “MALDI-MS imaging for the study of tissue pharmacodynamics and toxicodynamics,” Bioanalysis, vol. 7, no. 1, pp. 91–101, 2015. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Levy, D. Bomze, S. Heinz et al., “Long-term culture and expansion of primary human hepatocytes,” Nature Biotechnology, vol. 33, no. 12, pp. 1264–1271, 2015. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Mueller, L. Krämer, E. Hoffmann, S. Klein, and F. Noor, “3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies,” Toxicology in Vitro, vol. 28, no. 1, pp. 104–112, 2014. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Hadi, I. M. Westra, V. Starokozhko, S. Dragovic, M. T. Merema, and G. M. M. Groothuis, “Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury,” Chemical Research in Toxicology, vol. 26, no. 5, pp. 710–720, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. E. C. G. U. t. I. M. I. Mip Dili, “Mechanism-Based Integrated Prediction of Drug-Induced Liver Injury,” European, Patent no. Grant Agreement number 115336.
  106. R. L. C. Sison-Young, D. Mitsa, R. E. Jenkins et al., “Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication,” Toxicological Sciences, vol. 147, no. 2, pp. 412–424, 2015. View at Publisher · View at Google Scholar · View at Scopus
  107. D. B. Njoku, “Drug-induced hepatotoxicity: metabolic, genetic and immunological basis,” International Journal of Molecular Sciences, vol. 15, no. 4, pp. 6990–7003, 2014. View at Publisher · View at Google Scholar · View at Scopus
  108. S.-H. Kim and D. J. Naisbitt, “Update on advances in research on idiosyncratic drug-induced liver injury,” Allergy, Asthma and Immunology Research, vol. 8, no. 1, pp. 3–11, 2016. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Greene, L. Fisk, R. T. Naven, R. R. Note, M. L. Patel, and D. J. Pelletier, “Developing structure-activity relationships for the prediction of hepatotoxicity,” Chemical Research in Toxicology, vol. 23, no. 7, pp. 1215–1222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Suzuki, R. J. Andrade, E. Bjornsson et al., “Drugs associated with hepatotoxicity and their reporting frequency of liver adverse events in VigiBase: unified list based on international collaborative work,” Drug Safety, vol. 33, no. 6, pp. 503–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. C. J. Ursem, N. L. Kruhlak, J. F. Contrera, P. M. MacLaughlin, R. D. Benz, and E. J. Matthews, “Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans. Part A: use of FDA post-market reports to create a database of hepatobiliary and urinary tract toxicities,” Regulatory Toxicology and Pharmacology, vol. 54, no. 1, pp. 1–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. A. D. Rodgers, H. Zhu, D. Fourches, I. Rusyn, and A. Tropsha, “Modeling liver-related adverse effects of drugs using κ nearest neighbor quantitative structure-activity relationship method,” Chemical Research in Toxicology, vol. 23, no. 4, pp. 724–732, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. X. Zhu and N. L. Kruhlak, “Construction and analysis of a human hepatotoxicity database suitable for QSAR modeling using post-market safety data,” Toxicology, vol. 321, no. 1, pp. 62–72, 2014. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Z. Sakatis, M. J. Reese, A. W. Harrell et al., “Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds,” Chemical Research in Toxicology, vol. 25, no. 10, pp. 2067–2082, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. Weng, K. Wang, H. Li, and Q. Shi, “A comprehensive study of the association between drug hepatotoxicity and daily dose, liver metabolism, and lipophilicity using 975 oral medications,” Oncotarget, vol. 6, no. 19, pp. 17031–17038, 2015. View at Publisher · View at Google Scholar · View at Scopus
  116. S.-H. Huang, C.-W. Tung, F. Fülöp, and J.-H. Li, “Developing a QSAR model for hepatotoxicity screening of the active compounds in traditional Chinese medicines,” Food and Chemical Toxicology, vol. 78, pp. 71–77, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. F. Shah and N. Greene, “Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space,” Chemical Research in Toxicology, vol. 27, no. 1, pp. 86–98, 2014. View at Publisher · View at Google Scholar · View at Scopus
  118. M. D. Aleo, Y. Luo, R. Swiss, P. D. Bonin, D. M. Potter, and Y. Will, “Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump,” Hepatology, vol. 60, no. 3, pp. 1015–1022, 2014. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Garside, K. F. Marcoe, J. Chesnut-Speelman et al., “Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of HepG2 cells and cryopreserved primary human hepatocytes,” Toxicology in Vitro, vol. 28, no. 2, pp. 171–181, 2014. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Tomida, H. Okamura, M. Satsukawa, T. Yokoi, and Y. Konno, “Multiparametric assay using HepaRG cells for predicting drug-induced liver injury,” Toxicology Letters, vol. 236, no. 1, pp. 16–24, 2015. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Hill, N. Mesens, M. Steemans, J. J. Xu, and M. D. Aleo, “Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development,” Drug Metabolism Reviews, vol. 44, no. 1, pp. 127–140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. D. Jennen, J. Polman, M. Bessem, M. Coonen, J. van Delft, and J. Kleinjans, “Drug-induced liver injury classification model based on in vitro human transcriptomics and in vivo rat clinical chemistry data,” Systems Biomedicine, vol. 2, no. 4, pp. 63–70, 2014. View at Publisher · View at Google Scholar
  123. W. Mattes, K. Davis, E. Fabian et al., “Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma,” Toxicology Letters, vol. 230, no. 3, pp. 467–478, 2014. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Zhang, M. Chen, and W. Tong, “Is toxicogenomics a more reliable and sensitive biomarker than conventional indicators from rats to predict drug-induced liver injury in humans?” Chemical Research in Toxicology, vol. 25, no. 1, pp. 122–129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. Z. Lin and Y. Will, “Evaluation of drugs with specific organ toxicities in organ-specific cell lines,” Toxicological Sciences, vol. 126, no. 1, pp. 114–127, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Lu, S. Nadanaciva, R. Swiss, B. Jessen, and Y. Will, “Lysosomes, Compound Accumulation and in vitro Toxicity. Abstract number 1650,” The Toxicologist: Supplement to Toxicological Sciences, 355, 2011.
  127. F. Shah, S. Louise-May, and N. Greene, “Chemotypes sensitivity and predictivity of in vivo outcomes for cytotoxic assays in THLE and HepG2 cell lines,” Bioorganic and Medicinal Chemistry Letters, vol. 24, no. 12, pp. 2753–2757, 2014. View at Publisher · View at Google Scholar · View at Scopus
  128. J. A. Dykens, J. D. Jamieson, L. D. Marroquin et al., “In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone,” Toxicological Sciences, vol. 103, no. 2, pp. 335–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Nadanaciva, J. A. Dykens, A. Bernal, R. A. Capaldi, and Y. Will, “Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration,” Toxicology and Applied Pharmacology, vol. 223, no. 3, pp. 277–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. B. D. Cosgrove, B. M. King, M. A. Hasan et al., “Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity,” Toxicology and Applied Pharmacology, vol. 237, no. 3, pp. 317–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. J. G. Kenna, S. H. Stahl, J. A. Eakins et al., “Multiple compound-related adverse properties contribute to liver injury caused by Endothelin receptor antagonists,” Journal of Pharmacology and Experimental Therapeutics, vol. 352, no. 2, pp. 281–290, 2015. View at Publisher · View at Google Scholar · View at Scopus
  132. X. Chu, K. Korzekwa, R. Elsby et al., “Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver,” Clinical Pharmacology & Therapeutics, vol. 94, no. 1, pp. 126–141, 2013. View at Publisher · View at Google Scholar · View at Scopus
  133. M. J. Santostefano, V. M. Richardson, N. J. Walker et al., “Dose-dependent localization of TCDD in isolated centrilobular and periportal hepatocytes,” Toxicological Sciences, vol. 52, no. 1, pp. 9–19, 1999. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Hohenester, L. Maillette de Buy Wenniger, C. C. Paulusma et al., “A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes,” Hepatology, vol. 55, no. 1, pp. 173–183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Y. Muller and M. N. Milton, “The determination and interpretation of the therapeutic index in drug development,” Nature Reviews Drug Discovery, vol. 11, no. 10, pp. 751–761, 2012. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Kessel, F. Gieseler, and B. G. Woodcock, “Influence of serum protein binding on the uptake and retention of idarubicin by sensitive and multidrug resistant human leukemic cells,” European Journal of Clinical Pharmacology, vol. 55, no. 5, pp. 369–373, 1999. View at Publisher · View at Google Scholar · View at Scopus
  137. J. J. Palmgrén, J. Mönkkönen, T. Korjamo, A. Hassinen, and S. Auriola, “Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 3, pp. 369–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. N. J. Hewitt, M. J. G. Lechón, J. B. Houston et al., “Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies,” Drug Metabolism Reviews, vol. 39, no. 1, pp. 159–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. J. C. Bouvy, M. A. Koopmanschap, R. R. Shah, and H. Schellekens, “The cost-effectiveness of drug regulation: the example of thorough QT/QTc studies,” Clinical Pharmacology and Therapeutics, vol. 91, no. 2, pp. 281–288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Park, J. Willard, D. Bi, M. Fiszman, D. Kozeli, and J. Koerner, “The impact of drug-related QT prolongation on FDA regulatory decisions,” International Journal of Cardiology, vol. 168, no. 5, pp. 4975–4976, 2013. View at Publisher · View at Google Scholar · View at Scopus
  141. P. T. Sager, G. Gintant, J. R. Turner, S. Pettit, and N. Stockbridge, “Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium,” American Heart Journal, vol. 167, no. 3, pp. 292–300, 2014. View at Publisher · View at Google Scholar · View at Scopus
  142. I. Cavero and H. Holzgrefe, “Comprehensive in vitro Proarrhythmia Assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative,” Expert Opinion on Drug Safety, vol. 13, no. 6, pp. 745–758, 2014. View at Publisher · View at Google Scholar · View at Scopus
  143. R. A. Star and R. S. Rasooly, “Searching for array standards in Rockville,” Nature Biotechnology, vol. 19, no. 5, pp. 418–419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Brazma, P. Hingamp, J. Quackenbush et al., “Minimum information about a microarray experiment (MIAME)—toward standards for microarray data,” Nature Genetics, vol. 29, no. 4, pp. 365–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Brazma, “Minimum information about a microarray experiment (MIAME)—successes, failures, challenges,” TheScientificWorldJournal, vol. 9, pp. 420–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Rogers and A. Cambrosio, “Making a new technology work: the standardization and regulation of microarrays,” Yale Journal of Biology and Medicine, vol. 80, no. 4, pp. 165–178, 2007. View at Google Scholar · View at Scopus
  147. L. Shi, L. H. Reid, W. D. Jones et al., “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nature Biotechnology, vol. 24, no. 9, pp. 1151–1161, 2006. View at Publisher · View at Google Scholar
  148. Z. Gan, J. Wang, N. Salomonis et al., “MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data,” BMC Bioinformatics, vol. 15, no. 1, article 69, 2014. View at Publisher · View at Google Scholar · View at Scopus
  149. L. Shi, R. G. Perkins, H. Fang, and W. Tong, “Reproducible and reliable microarray results through quality control: good laboratory proficiency and appropriate data analysis practices are essential,” Current Opinion in Biotechnology, vol. 19, no. 1, pp. 10–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. D. Kirkland, S. Pfuhler, D. Tweats et al., “How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM Workshop,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 628, no. 1, pp. 31–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. D. Kirkland, P. Kasper, L. Müller, R. Corvi, and G. Speit, “Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: a follow-up to an ECVAM workshop,” Mutation Research—Genetic Toxicology and Environmental Mutagenesis, vol. 653, no. 1-2, pp. 99–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. I. Kola and J. Landis, “Can the pharmaceutical industry reduce attrition rates?” Nature Reviews Drug Discovery, vol. 3, no. 8, pp. 711–715, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Wang, L. Urban, and D. Bojanic, “Maximising use of in vitro ADMET tools to predict in vivo bioavailability and safety,” Expert Opinion on Drug Metabolism and Toxicology, vol. 3, no. 5, pp. 641–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  154. J. Hynes, S. Nadanaciva, R. Swiss, C. Carey, S. Kirwan, and Y. Will, “A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays,” Toxicology in Vitro, vol. 27, no. 2, pp. 560–569, 2013. View at Publisher · View at Google Scholar · View at Scopus
  155. D. M. Dambach, B. A. Andrews, and F. Moulin, “New technologies and screening strategies for hepatotoxicity: use of in vitro models,” Toxicologic Pathology, vol. 33, no. 1, pp. 17–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. H. Hosomi, S. Akai, K. Minami et al., “An in vitro drug-induced hepatotoxicity screening system using CYP3A4-expressing and γ-glutamylcysteine synthetase knockdown cells,” Toxicology in Vitro, vol. 24, no. 3, pp. 1032–1038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. L. Tolosa, M. J. Gómez-Lechón, G. Pérez-Cataldo, J. V. Castell, and M. T. Donato, “HepG2 cells simultaneously expressing five P450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved,” Archives of Toxicology, vol. 87, no. 6, pp. 1115–1127, 2013. View at Publisher · View at Google Scholar · View at Scopus
  158. X.-W. Zhu, A. Sedykh, and S.-S. Liu, “Hybrid in silico models for drug-induced liver injury using chemical descriptors and in vitro cell-imaging information,” Journal of Applied Toxicology, vol. 34, no. 3, pp. 281–288, 2014. View at Publisher · View at Google Scholar · View at Scopus
  159. J. Zhang, U. Doshi, A. Suzuki et al., “Evaluation of multiple mechanism-based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles,” Chemico-Biological Interactions, vol. 255, pp. 3–11, 2016. View at Publisher · View at Google Scholar · View at Scopus
  160. J. H. Ansede, W. R. Smith, C. H. Perry, R. L. St Claire III, and K. R. Brouwer, “An in vitro assay to assess transporter-based cholestatic hepatotoxicity using sandwich-cultured rat hepatocytes,” Drug Metabolism and Disposition, vol. 38, no. 2, pp. 276–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. K. K. Wolf, S. Vora, L. O. Webster, G. T. Generaux, J. W. Polli, and K. L. R. Brouwer, “Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport,” Toxicology in Vitro, vol. 24, no. 1, pp. 297–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. J. A. Barber, S. H. Stahl, C. Summers et al., “Quantification of drug-induced inhibition of canalicular cholyl-l-lysyl-fluorescein excretion from hepatocytes by high content cell imaging,” Toxicological Sciences, vol. 148, no. 1, Article ID kfv159, pp. 48–59, 2015. View at Publisher · View at Google Scholar · View at Scopus
  163. A. Sharanek, A. Burban, L. Humbert et al., “Cellular accumulation and toxic effects of bile acids in cyclosporine A-treated hepaRG hepatocytes,” Toxicological Sciences, vol. 147, no. 2, Article ID kfv155, pp. 573–587, 2015. View at Publisher · View at Google Scholar · View at Scopus
  164. R. L. Sison-Young, V. M. Lauschke, E. Johann et al., “A multicenter assessment of single-cell models aligned to standard measures of cell health for prediction of acute hepatotoxicity,” Archives of Toxicology, 2016. View at Publisher · View at Google Scholar
  165. M. Burbank, A. Sharanek, A. Burban, R. J. Weaver, C. Guguen-Guillouzo, and A. Guillouzo, “Selective bile canalicular changes induced by cholestatic drugs,” Toxicology Letters, vol. 238, no. 2, supplement, p. S301, 2015. View at Publisher · View at Google Scholar
  166. S. Dawson, S. Stahl, N. Paul, J. Barber, and J. G. Kenna, “In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans,” Drug Metabolism and Disposition, vol. 40, no. 1, pp. 130–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  167. J. M. Pedersen, P. Matsson, C. A. S. Bergström et al., “Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11),” Toxicological Sciences, vol. 136, no. 2, pp. 328–343, 2013. View at Publisher · View at Google Scholar · View at Scopus
  168. S. Nakayama, R. Atsumi, H. Takakusa et al., “A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding,” Drug Metabolism and Disposition, vol. 37, no. 9, pp. 1970–1977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. T. Usui, M. Mise, T. Hashizume, M. Yabuki, and S. Komuro, “Evaluation of the potential for drug-induced liver injury based on in vitro covalent binding to human liver proteins,” Drug Metabolism and Disposition, vol. 37, no. 12, pp. 2383–2392, 2009. View at Publisher · View at Google Scholar · View at Scopus