Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 1623679, 10 pages
https://doi.org/10.1155/2017/1623679
Review Article

Clinical Applications of Immunotherapy Combination Methods and New Opportunities for the Future

Dr. A. Y. Ankara Oncology Research and Training Hospital, Ankara, Turkey

Correspondence should be addressed to Ece Esin; moc.liamg@niseece.rd

Received 7 April 2017; Accepted 19 June 2017; Published 7 August 2017

Academic Editor: Carmen Criscitiello

Copyright © 2017 Ece Esin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WB. Coley, “The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893,” Clin Orthop Relat Res, p. 11, 1991. View at Google Scholar
  2. I. Mellman, G. Coukos, and G. Dranoff, “Cancer immunotherapy comes of age,” Nature, vol. 480, no. 7378, pp. 480–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Wiemann and C. O. Starnes, “Coley's toxins, tumor necrosis factor and cancer research: a historical perspective,” Pharmacology and Therapeutics, vol. 64, no. 3, pp. 529–564, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. C. O. Starnes, “Coley's toxins in perspective,” Nature, vol. 357, no. 6373, pp. 11-12, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. E. F. McCarthy, “The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas,” The Iowa Orthopaedic Journal, vol. 26, pp. 154–158, 2006. View at Google Scholar · View at Scopus
  6. P. Kucerova and M. Cervinkova, “Spontaneous regression of tumour and the role of microbial infection - possibilities for cancer treatment,” Anti-Cancer Drugs, vol. 27, no. 4, pp. 269–277, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. SS. Lam, F. Zhou, and T. Hode, “Advances in strategies and methodologies in cancer immunotherapy,” Discovery Medicine, vol. 19, pp. 293–301, 2015. View at Google Scholar
  8. M. B. Atkins, M. T. Lotze, and J. P. Dutcher, “High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993,” Journal of Clinical Oncology, vol. 17, no. 7, pp. 2105–2116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Atkins, L. Kunkel, M. Sznol, and S. A. Rosenberg, “High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update,” Cancer Journal from Scientific American, vol. 6, 6, no. 1, pp. S11–S14, 2000. View at Google Scholar · View at Scopus
  10. P. A. Prieto, A. Reuben, Z. A. Cooper, and J. A. Wargo, “Targeted therapies combined with immune checkpoint therapy,” Cancer Journal (United States), vol. 22, no. 2, pp. 138–146, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Sharma and J. P. Allison, “The future of immune checkpoint therapy,” Science, vol. 348, no. 6230, pp. 56–61, 2015. View at Publisher · View at Google Scholar
  12. S. L. Topalian, F. S. Hodi, J. R. Brahmer et al., “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer,” New England Journal of Medicine, vol. 366, no. 26, pp. 2443–2454, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. P. S. Linsley, W. Brady, M. Urnes, L. S. Grosmaire, N. K. Damle, and J. A. Ledbetter, “CTLA-4 is a second receptor for the B cell activation antigen B7,” The Journal of Experimental Medicine, vol. 174, no. 3, pp. 561–569, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. L. M. Francisco, V. H. Salinas, K. E. Brown et al., “PD-L1 regulates the development, maintenance, and function of induced regulatory T cells,” Journal of Experimental Medicine, vol. 206, no. 13, pp. 3015–3029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Amarnath, C. W. Mangus, J. C. M. Wang et al., “The PDL1-PD1 axis converts human T H1 cells into regulatory T cells,” Science Translational Medicine, vol. 3, no. 111, Article ID 111ra120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 13, pp. 711–723, 2010. View at Publisher · View at Google Scholar
  17. C. Robert, L. Thomas, and I. Bondarenko, “Ipilimumab plus dacarbazine for previously untreated metastatic melanoma,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2517–2526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. H. Camacho, “CTLA-4 blockade with ipilimumab: Biology, safety, efficacy, and future considerations,” Cancer Medicine, vol. 4, no. 5, pp. 661–672, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Schadendorf, F. S. Hodi, C. Robert et al., “Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma,” Journal of Clinical Oncology, vol. 33, no. 17, pp. 1889–1894, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. B. D. Curti, M. Kovacsovics-Bankowski, N. Morris et al., “OX40 is a potent immune-stimulating target in late-stage cancer patients,” Cancer Research, vol. 73, no. 24, pp. 7189–7198, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. G. V. Long, V. Atkinson, P. A. Ascierto et al., “Effect of nivolumab on health-related quality of life in patients with treatment-naive advanced melanoma: results from the phase III CheckMate 066 study,” Annals of Oncology, vol. 27, no. 10, pp. 1940–1946, 2016. View at Publisher · View at Google Scholar
  22. C. Robert, G. V. Long, B. Brady et al., “Nivolumab in previously untreated melanoma without BRAF mutation,” The New England Journal of Medicine, pp. 320–330, 2015. View at Google Scholar
  23. J. S. Weber, S. P. D'Angelo, D. Minor et al., “Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial,” The Lancet Oncology, vol. 16, no. 4, pp. 375–384, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. M. E. Valsecchi, “Combined nivolumab and ipilimumab or monotherapy in untreated melanoma,” New England Journal of Medicine, vol. 373, no. 13, p. 1270, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. S. L. Topalian, M. Sznol, and D. F. McDermott, “Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab,” Journal of Clinical Oncology, vol. 32, no. 10, pp. 1020–1030, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Menon, S. Shin, and G. Dy, “Advances in cancer immunotherapy in solid tumors,” Cancers, vol. 8, no. 12, article no. 106, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. D. F. McDermott, J. A. Sosman, M. Sznol et al., “Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: Long-term safety, clinical activity, and immune correlates from a phase Ia study,” Journal of Clinical Oncology, vol. 34, no. 8, pp. 833–842, 2016. View at Publisher · View at Google Scholar · View at Scopus
  28. V. K. Anagnostou and J. R. Brahmer, “Cancer immunotherapy: A future paradigm shift in the treatment of non-small cell lung cancer,” Clinical Cancer Research, vol. 21, no. 5, pp. 976–984, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Burgess, V. Gorantla, K. Weiss, and H. Tawbi, “Immunotherapy in sarcoma: future horizons,” Current Oncology Reports, vol. 17, no. 11, article 52, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. J. R. Brahmer, S. S. Tykodi, L. Q. M. Chow et al., “Safety and activity of anti-PD-L1 antibody in patients with advanced cancer,” The New England Journal of Medicine, vol. 366, no. 26, pp. 2455–2465, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Borchmann and B. von Tresckow, “Novel agents in classical Hodgkin lymphoma,” Leukemia & Lymphoma, vol. 58, no. 10, pp. 2275–2286, 2017. View at Publisher · View at Google Scholar
  32. T. L. Walunas, C. Y. Bakker, and J. A. Bluestone, “CTLA-4 ligation blocks CD28-dependent T cell activation,” The Journal of Experimental Medicine, vol. 183, no. 6, pp. 2541–2550, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Schneider, J. Downey, A. Smith et al., “Reversal of the TCR stop signal by CTLA-4,” Science, vol. 313, no. 5795, pp. 1972–1975, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. B. T. Fife and J. A. Bluestone, “Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways,” Immunological Reviews, vol. 224, no. 1, pp. 166–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. F. Krummel and J. P. Allison, “CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation,” Journal of Experimental Medicine, vol. 182, no. 2, pp. 459–465, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. J. S. O'Donnell, G. V. Long, R. A. Scolyer, M. W. Teng, and M. J. Smyth, “Resistance to PD1/PDL1 checkpoint inhibition,” Cancer Treatment Reviews, vol. 52, pp. 71–81, 2017. View at Publisher · View at Google Scholar
  37. J. D. Wolchok, H. Kluger, and M. K. Callahan, “Nivolumab plus Ipilimumab in advanced melanoma,” The New England Journal of Medicine, vol. 369, no. 2, pp. 122–133, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Postow, J. Chesney, A. C. Pavlick et al., “Nivolumab and ipilimumab versus ipilimumab in untreated melanoma,” The New England Journal of Medicine, 2015. View at Publisher · View at Google Scholar
  39. J. D. Wolchok, V. Chiarion-Sileni, R. Gonzalez et al., “Efficacy and safety results from a phase III trial of nivolumab (NIVO) alone or combined with ipilimumab (IPI) versus IPI alone in treatment-naive patients (pts) with advanced melanoma (MEL) (CheckMate 067),” Journal of Clinical Oncology, vol. 33, no. 18_suppl, pp. LBA1–LBA1, 2015. View at Publisher · View at Google Scholar
  40. A. T. Hussein, P. A. Alain, H. Omid et al., “Efficacy and safety of nivolumab (NIVO) plus ipilimumab (IPI) in patients with melanoma (MEL) metastatic to the brain: Results of the phase II study CheckMate 204. In 2017 ASCO Annual Meeting. chicago,” Journal of Clinical Oncology, pp. 1-2, 2017. View at Google Scholar
  41. S. Matteo, V. A. Carlino, S. Jonathan et al., “Efficacy and safety of pembrolizumab (pembro) plus ipilimumab (ipi) for advanced melanoma. In 2017 ASCO Annual Meeting. Chicago,” Journal of Clinical Oncology, 2017. View at Google Scholar
  42. Y. Shi, H. Yi, C. Huang, C. A. Pollock, and X. Chen, “A randomized phase II study of nivolumab or nivolumab combined with ipilimumab in patients (pts) with melanoma brain metastases (mets): The Anti-PD1 Brain Collaboration (ABC). In 2017 ASCO Annual Meeting. Chicago,” Journal of Clinical Oncology, vol. 2, no. 1, pp. 23–25, 2017. View at Google Scholar
  43. H. Hammers, E. Plimack, J. Infante et al., “Updated results from a phase I study of nivolumab (Nivo) in combination with ipilimumab (Ipi) in metastatic renal cell carcinoma (mRCC): The CheckMate 016 study,” Annals of Oncology, vol. 27, no. suppl_6, pp. 1062P–1062P, 2016. View at Publisher · View at Google Scholar
  44. H. Borghaei, L. Paz-Ares, L. Horn et al., “Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer,” The New England Journal of Medicine, vol. 373, no. 17, pp. 1627–1639, 2015. View at Publisher · View at Google Scholar
  45. J. Brahmer, K. L. Reckamp, P. Baas et al., “Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer,” The New England Journal of Medicine, vol. 373, no. 2, pp. 123–135, 2015. View at Publisher · View at Google Scholar · View at Scopus
  46. M. D. Hellmann, N. A. Rizvi, J. W. Goldman et al., “Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study,” The Lancet Oncology, vol. 18, no. 1, pp. 31–41, 2017. View at Publisher · View at Google Scholar
  47. S. Antonia, S. B. Goldberg, A. Balmanoukian et al., “Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study,” The Lancet Oncology, vol. 17, no. 3, pp. 299–308, 2016. View at Publisher · View at Google Scholar · View at Scopus
  48. S. J. Antonia, J. A. López-Martin, J. Bendell et al., “Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial,” The Lancet Oncology, vol. 17, no. 7, pp. 883–895, 2016. View at Publisher · View at Google Scholar · View at Scopus
  49. J. F. Grosso, C. C. Kelleher, T. J. Harris et al., “LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems,” The Journal of Clinical Investigation, vol. 117, no. 11, pp. 3383–3392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. F. Grosso, M. V. Goldberg, D. Getnet et al., “Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells,” Journal of Immunology, vol. 182, no. 11, pp. 6659–6669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Monney, C. A. Sabatos, J. L. Gaglia et al., “Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease,” Nature, vol. 415, no. 6871, pp. 536–541, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H.-T. Jin, A. C. Anderson, and W. G. Tan, “Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14733–14738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S.-R. Woo, M. E. Turnis, M. V. Goldberg et al., “Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape,” Cancer Research, vol. 72, no. 4, pp. 917–927, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Sakuishi, L. Apetoh, J. M. Sullivan, B. R. Blazar, V. K. Kuchroo, and A. C. Anderson, “Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity,” Journal of Experimental Medicine, vol. 207, no. 10, pp. 2187–2194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Ilkovitch and D. M. Lopez, “The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression,” Cancer Research, vol. 69, no. 13, pp. 5514–5521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Michelle Xu, Y. Pu, R. R. Weichselbaum, and Y.-X. Fu, “Integrating conventional and antibody-based targeted anticancer treatment into immunotherapy,” Oncogene, 2016. View at Publisher · View at Google Scholar · View at Scopus
  57. A. D. Weinberg, M.-M. Rivera, R. Prell et al., “Engagement of the OX-40 receptor in vivo enhances antitumor immunity,” Journal of Immunology, vol. 164, no. 4, pp. 2160–2169, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Guo, X. Wang, D. Cheng, Z. Xia, M. Luan, and S. Zhang, “PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer,” PLoS ONE, vol. 9, no. 2, Article ID e89350, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Marabelle, H. Kohrt, I. Sagiv-Barfi et al., “Depleting tumor-specific Tregs at a single site eradicates disseminated tumors,” Journal of Clinical Investigation, vol. 123, no. 6, pp. 2447–2463, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. D. A. Schaer, A. D. Cohen, and J. D. Wolchok, “Anti-GITR antibodies-Potential clinical applications for tumor immunotherapy,” Current Opinion in Investigational Drugs, vol. 11, no. 12, pp. 1378–1386, 2010. View at Google Scholar · View at Scopus
  61. A. D. Cohen, D. A. Schaer, C. Liu et al., “Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation,” PLoS ONE, vol. 5, no. 5, Article ID e10436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Lu, X. Xu, B. Zhang, R. Zhang, H. Ji, and X. Wang, “Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs,” Journal of Translational Medicine, vol. 12, no. 1, article no. 36, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. D. S. Vinay and B. S. Kwon, “4-1BB signaling beyond T cells,” Cellular and Molecular Immunology, vol. 8, no. 4, pp. 281–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. A. Hernandez-Chacon, Y. Li, R. C. Wu et al., “Costimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances antitumor effector function,” Journal of Immunotherapy, vol. 34, no. 3, pp. 236–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. I. Melero, W. W. Shuford, S. A. Newby et al., “Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors,” Nature Medicine, vol. 3, no. 6, pp. 682–685, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Sznol, F. S. Hodi, K. Margolin et al., “Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients with advanced cancer,” Journal of Clinical Oncology, vol. 26, no. 15_suppl, pp. 3007–3007, 2008. View at Publisher · View at Google Scholar
  67. M. D. Hellmann, C. F. Friedman, and J. D. Wolchok, “Combinatorial Cancer Immunotherapies,” Advances in Immunology, vol. 130, pp. 251–277, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Zamarin and M. A. Postow, “Immune checkpoint modulation: Rational design of combination strategies,” Pharmacology and Therapeutics, vol. 150, pp. 23–32, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. RH. Andtbacka, HL. Kaufman, and F. Collichio, “Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma,” Journal of Clinical Oncology, vol. 33, pp. 2780–2788, 2015. View at Google Scholar
  70. I. Puzanov, M. Milhem, R. Andtbacka et al., “Survival, safety, and response patterns in a phase 1b multicenter trial of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma,” Journal for ImmunoTherapy of Cancer, vol. 1, no. Suppl 1, p. P84, 2013. View at Publisher · View at Google Scholar
  71. F. Ghiringhelli, C. Menard, P. E. Puig et al., “Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients,” Cancer Immunology, Immunotherapy, vol. 56, no. 5, pp. 641–648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. D. T. Le and E. M. Jaffee, “Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective,” Cancer Research, vol. 72, no. 14, pp. 3439–3444, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Sevko, T. Michels, M. Vrohlings et al., “Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model,” Journal of Immunology, vol. 190, no. 5, pp. 2464–2471, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Shevchenko, S. Karakhanova, S. Soltek et al., “Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer,” International Journal of Cancer, vol. 133, no. 1, pp. 98–107, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Reck, I. Bondarenko, A. Luft et al., “Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensivedisease-small-cell lungcancer: Results from a randomized, double-blind, multicenter phase 2 trial,” Annals of Oncology, vol. 24, no. 1, Article ID mds213, pp. 75–83, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. T. J. Lynch, I. Bondarenko, A. Luft et al., “Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study,” Journal of Clinical Oncology, vol. 30, no. 17, pp. 2046–2054, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Boland and W. Ma, “Immunotherapy for colorectal cancer,” Cancers (Basel), vol. 9, no. 5, p. 50, 2017. View at Publisher · View at Google Scholar
  78. M. Koopman, G. A. M. Kortman, L. Mekenkamp et al., “Deficient mismatch repair system in patients with sporadic advanced colorectal cancer,” British Journal of Cancer, vol. 100, no. 2, pp. 266–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Cancer Genome Atlas, “Comprehensive molecular characterization of human colon and rectal cancer,” Nature, vol. 487, pp. 330–337, 2012. View at Google Scholar
  80. R. Dienstmann, L. Vermeulen, J. Guinney, S. Kopetz, S. Tejpar, and J. Tabernero, “The consensus molecular subtypes of colorectal cancer,” Nat Med, vol. 21, no. 4, pp. 1350–1356, 2015. View at Publisher · View at Google Scholar
  81. A. Tesniere, F. Schlemmer, V. Boige et al., “Immunogenic death of colon cancer cells treated with oxaliplatin,” Oncogene, vol. 29, no. 4, pp. 482–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Safi Shahda, S. Tanios, H. Bert et al., “A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer,” in In 2017 ASCO Annual Meeting, ASCO, Chicago, Ill, USA, 2017. View at Google Scholar
  83. Y. Ge, C. Domschke, N. Stoiber et al., “Metronomic cyclophosphamide treatment in metastasized breast cancer patients: Immunological effects and clinical outcome,” Cancer Immunology, Immunotherapy, vol. 61, no. 3, pp. 353–362, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. R. S. Kerbel and B. A. Kamen, “The anti-angiogenic basis of metronomic chemotherapy,” Nature Reviews Cancer, vol. 4, no. 6, pp. 423–436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Zitvogel, O. Kepp, and G. Kroemer, “Immune parameters affecting the efficacy of chemotherapeutic regimens,” Nature Reviews Clinical Oncology, vol. 8, no. 3, pp. 151–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Zitvogel, L. Apetoh, F. Ghiringhelli, and G. Kroemer, “Immunological aspects of cancer chemotherapy,” Nature Reviews Immunology, vol. 8, no. 1, pp. 59–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Hu-Lieskovan, L. Robert, B. H. Moreno, and A. Ribas, “Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: Promise and challenges,” Journal of Clinical Oncology, vol. 32, no. 21, pp. 2248–2254, 2014. View at Publisher · View at Google Scholar · View at Scopus
  88. D. T. Frederick, A. Piris, A. P. Cogdill et al., “BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma,” Clinical Cancer Research, vol. 19, no. 5, pp. 1225–1231, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Simeone, A. M. Grimaldi, L. Festino, V. Vanella, M. Palla, and P. A. Ascierto, “Combination treatment of patients with braf-mutant melanoma: a new standard of care,” BioDrugs, vol. 31, no. 1, pp. 51–61, 2017. View at Publisher · View at Google Scholar
  90. X. Jiang, J. Zhou, A. Giobbie-Hurder, J. Wargo, and F. S. Hodi, “The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition,” Clinical Cancer Research, vol. 19, no. 3, pp. 598–609, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Amin, D. H. Lawson, A. K. Salama et al., “A single-arm, open-label, phase II study to evaluate the safety of vemurafenib (VEM) followed by ipilimumab (IPI) in BRAF V600-mutated metastatic melanoma (MM),” Journal for ImmunoTherapy of Cancer, vol. 4, no. 1, 2015. View at Publisher · View at Google Scholar
  92. A. Ribas, F. S. Hodi, M. Callahan, C. Konto, and J. Wolchok, “Hepatotoxicity with combination of vemurafenib and ipilimumab,” New England Journal of Medicine, vol. 368, no. 14, pp. 1365-1366, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. D. R. Minor, I. Puzanov, M. K. Callahan, B. A. Hug, and A. Hoos, “Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab,” Pigment Cell and Melanoma Research, vol. 28, no. 5, pp. 611-612, 2015. View at Publisher · View at Google Scholar · View at Scopus
  94. O. Hamid PM and S. Hodi, “Preliminary clinical safety, tolerability and activity of atezolizumab combined with vemurafenib in BRAFV600 metastatic melanoma. In Society for Melanoma Research (SMR),” Pigment Cell & Melanoma Research, pp. 611-612, 2015. View at Google Scholar
  95. M. J. Reilley, A. Bailey, V. Subbiah et al., “Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies,” Journal for ImmunoTherapy of Cancer, vol. 5, no. 1, 2017. View at Publisher · View at Google Scholar
  96. L. E. Kandalaft, G. T. Motz, J. Busch, and G. Coukos, “Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin.,” Current topics in microbiology and immunology, vol. 344, pp. 129–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. P. A. Ott, F. Stephen Hodi, and E. I. Buchbinder, “Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: An overview of rationale, preclinical evidence, and initial clinical data,” Frontiers in Oncology, vol. 5, article no. 202, 2015. View at Publisher · View at Google Scholar · View at Scopus
  98. J. E. Ohm and D. P. Carborne, “VEGF as a mediator of tumor-associated immunodeficiency,” Immunologic Research, vol. 23, no. 2-3, pp. 263–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. F. S. Hodi, D. Lawrence, C. Lezcano et al., “Bevacizumab plus ipilimumab in patients with metastatic melanoma,” Cancer immunology research, vol. 2, no. 7, pp. 632–642, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. F. M. Johnson, B. N. Bekele, L. Feng et al., “Phase II study of dasatinib in patients with advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 30, pp. 4609–4615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Seggewiss, D. A. Price, and M. A. Purbhoo, “Immunomodulatory effects of imatinib and second-generation tyrosine kinase inhibitors on T cells and dendritic cells: An update,” Cytotherapy, vol. 10, no. 6, pp. 633–641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Kreutzman, M. Ilander, K. Porkka, J. Vakkila, and S. Mustjoki, “Dasatinib promotes Th1-type responses in granzyme B expressing T-cells,” OncoImmunology, vol. 3, no. 5, Article ID e28925, 2014. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Yang, C. Liu, W. Peng et al., “Antitumor T-cell responses contribute to the effects of dasatinib on c-KIT mutant murine mastocytoma and are potentiated by anti-OX40,” Blood, vol. 120, no. 23, pp. 4533–4543, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Esposito, C. Criscitiello, and G. Curigliano, “Immune checkpoint inhibitors with radiotherapy and locoregional treatment: Synergism and potential clinical implications,” Current Opinion in Oncology, vol. 27, no. 6, pp. 445–451, 2015. View at Publisher · View at Google Scholar · View at Scopus
  105. R. H. Mole, “Whole body irradiation; radiobiology or medicine?” The British journal of radiology, vol. 26, no. 305, pp. 234–241, 1953. View at Publisher · View at Google Scholar · View at Scopus
  106. S. K. Dey, “Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer,” Clinical Cancer Research : An Official Journal of The American Association for Cancer Research, vol. 11, pp. 728–734, 2005. View at Google Scholar · View at MathSciNet
  107. J. Kalina, D. Neilson, A. Comber et al., “Immune Modulation by Androgen Deprivation and Radiation Therapy: Implications for Prostate Cancer Immunotherapy,” Cancers, vol. 9, no. 2, p. 13, 2017. View at Publisher · View at Google Scholar
  108. D. Ishihara, L. Pop, T. Takeshima, P. Iyengar, and R. Hannan, “Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment,” Cancer Immunology, Immunotherapy, pp. 1–18, 2016. View at Publisher · View at Google Scholar · View at Scopus
  109. M. A. Postow, M. K. Callahan, C. A. Barker et al., “Immunologic correlates of the abscopal effect in a patient with melanoma,” The New England Journal of Medicine, vol. 366, no. 10, pp. 925–931, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. P. A. Ott, F. S. Hodi, H. L. Kaufman, J. M. Wigginton, and J. D. Wolchok, “Combination immunotherapy: a road map,” Journal for Immuno Therapy of Cancer, vol. 5, no. 1, 2017. View at Publisher · View at Google Scholar
  111. A. B. Sharabi, M. Lim, T. L. DeWeese, and C. G. Drake, “Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy,” The Lancet Oncology, vol. 16, no. 13, pp. e498–e509, 2015. View at Publisher · View at Google Scholar · View at Scopus
  112. A. M. Grimaldi, E. Simeone, D. Giannarelli et al., “Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy,” OncoImmunology, vol. 3, no. 5, Article ID e28780, 2014. View at Publisher · View at Google Scholar · View at Scopus
  113. S. F. Powell, M. M. Gitau, C. J. Sumey et al., “Safety of pembrolizumab with chemoradiation (CRT) in locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN),” presented in American Society of Clinical Oncology 2017 Annual Meeting, Journal of Clinical Oncology, 2017.