Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 2592496, 9 pages
https://doi.org/10.1155/2017/2592496
Research Article

The Proangiogenic Capabilities of Malignant Ascites Generated by Aggressive Ovarian Tumors

1Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
2Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str., 60-535 Poznań, Poland
3Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland

Correspondence should be addressed to Krzysztof Książek; lp.ude.pmu@kezaiskk

Received 20 June 2017; Accepted 16 August 2017; Published 20 September 2017

Academic Editor: Maria Barbolina

Copyright © 2017 Justyna Mikuła-Pietrasik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Yadav, N. Puri, V. Rastogi, P. Satpute, and V. Sharma, “Tumour angiogenesis and angiogenic inhibitors: A review,” Journal of Clinical and Diagnostic Research, vol. 9, no. 6, pp. XE01–XE05, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Welti, S. Loges, S. Dimmeler, and P. Carmeliet, “Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer,” Journal of Clinical Investigation, vol. 123, no. 8, pp. 3190–3200, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. N. G. Gavalas, M. Liontos, S.-P. Trachana et al., “Angiogenesis-related pathways in the pathogenesis of ovarian cancer,” International Journal of Molecular Sciences, vol. 14, no. 8, pp. 15885–15909, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Cvetkovic, “Early events in ovarian oncogenesis,” Reproductive Biology and Endocrinology, vol. 1, article 68, 2003. View at Google Scholar
  5. S. Mesiano, N. Ferrara, and R. B. Jaffe, “Role of vascular endothelial growth factor in ovarian cancer: Inhibition of ascites formation by immunoneutralization,” American Journal of Pathology, vol. 153, no. 4, pp. 1249–1256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Matte, D. Lane, C. Laplante, P. Garde-Granger, C. Rancourt, and A. Piché, “Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells,” International Journal of Cancer, vol. 137, no. 2, pp. 289–298, 2015. View at Publisher · View at Google Scholar
  7. L. Xu, J. Yoneda, C. Herrera, J. Wood, J. J. Killion, and I. J. Fidler, “Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases,” International Journal of Oncology, vol. 16, pp. 445–454, 2000. View at Publisher · View at Google Scholar
  8. G. Aravantinos and D. Pectasides, “Bevacizumab in combination with chemotherapy for the treatment of advanced ovarian cancer: A systematic review,” Journal of Ovarian Research, vol. 7, no. 1, article no. 57, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Gawrychowski, G. Szewczyk, E. Skopińska-Rózewska et al., “The angiogenic activity of ascites in the course of ovarian cancer as a marker of disease progression,” Disease Markers, vol. 2014, Article ID 683757, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. G. D'Andrilli, A. Giordano, and A. Bovicelli, “Epithelial Ovarian Cancer: The Role of Cell Cycle Genes in the Different Histotypes,” The Open Clinical Cancer Journal, vol. 2, pp. 7–12, 2008. View at Publisher · View at Google Scholar
  11. M. P. Pusztaszeri, W. Seelentag, and F. T. Bosman, “Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues,” Journal of Histochemistry and Cytochemistry, vol. 54, no. 4, pp. 385–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. I.-M. Shih and R. J. Kurman, “Ovarian Tumorigenesis: A Proposed Model Based on Morphological and Molecular Genetic Analysis,” American Journal of Pathology, vol. 164, no. 5, pp. 1511–1518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis, vol. 11, no. 2, pp. 109–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. M. Rensen, P. A. F. M. Doevendans, and G. J. J. M. Van Eys, “Regulation and characteristics of vascular smooth muscle cell phenotypic diversity,” Netherlands Heart Journal, vol. 15, no. 3, pp. 100–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Hao, G. Gabbiani, and M.-L. Bochaton-Piallat, “Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 9, pp. 1510–1520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Bouïs, G. A. P. Hospers, C. Meijer, G. Molema, and N. H. Mulder, “Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research,” Angiogenesis, vol. 4, no. 2, pp. 91–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Matte, D. Lane, C. Laplante, P. Garde-Granger, C. Rancourt, and A. Piché, “Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells via cMet pathway through HGF-dependent and -independent mechanisms,” International Journal of Cancer, vol. 137, no. 2, pp. 289–298, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Mikuła-Pietrasik, P. Uruski, S. Szubert et al., “Biochemical composition of malignant ascites determines high aggressiveness of undifferentiated ovarian tumors,” Medical Oncology, vol. 33, no. 8, article no. 94, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Al-Nedawi, B. Meehan, R. S. Kerbel, A. C. Allison, and A. Rak, “Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3794–3799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Ziyad and M. L. Iruela-Arispe, “Molecular Mechanisms of Tumor Angiogenesis,” Genes and Cancer, vol. 2, no. 12, pp. 1085–1096, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Moghaddam, A. Amini, D. L. Morris, and M. H. Pourgholami, “Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer,” Cancer and Metastasis Reviews, vol. 31, no. 1-2, pp. 143–162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. E. G. Silva, C. Tornos, and M. A. Bailey, “Undifferentiated carcinoma of the ovary,” Archives of Pathology & Laboratory Medicine, vol. 115, pp. 377–381, 1991. View at Google Scholar
  23. S. A. Gerber, V. Y. Rybalko, C. E. Bigelow et al., “Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth,” American Journal of Pathology, vol. 169, no. 5, pp. 1739–1752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Sako, J. Kitayama, H. Yamaguchi et al., “Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2: Possible role of mesothelial cell on the development of peritoneal metastasis,” Journal of Surgical Research, vol. 115, no. 1, pp. 113–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Hirota and G. L. Semenza, “Regulation of angiogenesis by hypoxia-inducible factor 1,” Critical Reviews in Oncology/Hematology, vol. 59, no. 1, pp. 15–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Bertout, S. A. Patel, and M. C. Simon, “The impact of O2 availability on human cancer,” Nature Reviews Cancer, vol. 8, no. 12, pp. 967–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Hockel, K. Schlenger, M. Mitze, U. Schaffer, and P. Vaupel, “Hypoxia and radiation response in human tumors,” Seminars in Radiation Oncology, vol. 6, no. 1, pp. 3–9, 1996. View at Publisher · View at Google Scholar · View at Scopus