Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017 (2017), Article ID 2905987, 9 pages
https://doi.org/10.1155/2017/2905987
Research Article

Positive Association between ANKRD55 Polymorphism 7731626 and Dermatomyositis/Polymyositis with Interstitial Lung Disease in Chinese Han Population

1Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
2Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
3Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
4Department of Medical Laboratory, The First Hospital of Jilin University, Changchun, China

Correspondence should be addressed to Yongzhe Li

Received 13 January 2017; Revised 17 March 2017; Accepted 21 March 2017; Published 2 April 2017

Academic Editor: Dimitrios P. Bogdanos

Copyright © 2017 Liubing Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Bernatsky, L. Joseph, C. A. Pineau et al., “Estimating the prevalence of polymyositis and dermatomyositis from administrative data: age, sex and regional differences,” Annals of the Rheumatic Diseases, vol. 68, no. 7, pp. 1192–1196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Hoogendijk, A. A. Amato, B. R. Lecky et al., “119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10–12 October 2003, Naarden, The Netherlands,” Neuromuscular Disorders, vol. 14, no. 5, pp. 337–345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. Dalakas and R. Hohlfeld, “Polymyositis and dermatomyositis,” The Lancet, vol. 362, no. 9388, pp. 971–982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. E. Smoyer-Tomic, A. A. Amato, and A. W. Fernandes, “Incidence and prevalence of idiopathic inflammatory myopathies among commercially insured, Medicare supplemental insured, and Medicaid enrolled populations: an administrative claims analysis,” BMC Musculoskeletal Disorders, vol. 13, article 103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Bendewald, D. A. Wetter, X. Li, and M. D. P. Davis, “Incidence of dermatomyositis and clinically amyopathic dermatomyositis: a population-based study in Olmsted County, Minnesota,” Archives of Dermatology, vol. 146, no. 1, pp. 26–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ohta, M. Nagai, M. Nishina, H. Tomimitsu, and H. Kohsaka, “Prevalence and incidence of polymyositis and dermatomyositis in Japan,” Modern Rheumatology, vol. 24, no. 3, pp. 477–480, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. R. W. Hallowell, D. P. Ascherman, and S. K. Danoff, “Pulmonary manifestations of polymyositis/dermatomyositis,” Seminars in Respiratory and Critical Care Medicine, vol. 35, no. 2, pp. 239–248, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Marie, P. Y. Hatron, S. Dominique, P. Cherin, L. Mouthon, and J.-F. Menard, “Short-term and long-term outcomes of interstitial lung disease in polymyositis and dermatomyositis: a series of 107 patients,” Arthritis and Rheumatism, vol. 63, no. 11, pp. 3439–3447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Marie, E. Hachulla, P. Chérin et al., “Interstitial lung disease in polymyositis and dermatomyositis,” Arthritis Care and Research, vol. 47, no. 6, pp. 614–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-E. Zhang, Y. Li, Z.-X. Wang et al., “Variation at HLA-DPB1 is associated with dermatomyositis in Chinese population,” Journal of Dermatology, vol. 43, no. 11, pp. 1307–1313, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. F. W. Miller, W. Chen, T. P. O'Hanlon et al., “Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes,” Genes and Immunity, vol. 16, no. 7, pp. 470–480, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. F. W. Miller, R. G. Cooper, J. Vencovský et al., “Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders,” Arthritis and Rheumatism, vol. 65, no. 12, pp. 3239–3247, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. E. Betteridge, H. Gunawardena, and N. J. McHugh, “Pathogenic mechanisms of disease in myositis: autoantigens as clues,” Current Opinion in Rheumatology, vol. 21, no. 6, pp. 604–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Klopstock, “Drug-induced myopathies,” Current Opinion in Neurology, vol. 21, no. 5, pp. 590–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Okada, E. Weatherhead, I. N. Targoff, R. Wesley, and F. W. Miller, “Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease,” Arthritis and Rheumatism, vol. 48, no. 8, pp. 2285–2293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Cukier, R. A. Beauchamp, J. S. Spindler, S. Spindler, C. Lorenzo, and D. E. Trentham, “Association between bovine collagen dermal implants and a dermatomyositis or a polymyositis-like syndrome,” Annals of Internal Medicine, vol. 118, no. 12, pp. 920–928, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Lill, B.-M. M. Schjeide, C. Graetz et al., “Genome-wide significant association of ANKRD55 rs6859219 and multiple sclerosis risk,” Journal of Medical Genetics, vol. 50, no. 3, pp. 140–143, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Terao, K. Ohmura, Y. Kawaguchi et al., “PLD4 as a novel susceptibility gene for systemic sclerosis in a Japanese population,” Arthritis and Rheumatism, vol. 65, no. 2, pp. 472–480, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Miceli-Richard, E. Comets, P. Loiseau, X. Puechal, E. Hachulla, and X. Mariette, “Association of an IRF5 gene functional polymorphism with Sjögren's syndrome,” Arthritis and Rheumatism, vol. 56, no. 12, pp. 3989–3994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Okada, D. Wu, G. Trynka et al., “Genetics of rheumatoid arthritis contributes to biology and drug discovery,” Nature, vol. 506, no. 7488, pp. 376–381, 2014. View at Google Scholar
  21. A. Zhernakova, E. A. Stahl, G. Trynka et al., “Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci,” PLoS Genetics, vol. 7, no. 2, Article ID e1002004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. Stahl, S. Raychaudhuri, E. F. Remmers et al., “Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci,” Nature Genetics, vol. 42, no. 6, pp. 508–514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Manku, C. D. Langefeld, S. G. Guerra et al., “Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4,” PLoS Genetics, vol. 9, no. 7, Article ID e1003554, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. X.-J. Zhou, X.-L. Lu, S. K. Nath et al., “Gene-gene interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 64, no. 1, pp. 222–231, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. P. R. Baum, R. B. Gayle III, F. Ramsdell et al., “Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34,” EMBO Journal, vol. 13, no. 17, pp. 3992–4001, 1994. View at Google Scholar · View at Scopus
  26. J. Zaini, S. Andarini, M. Tahara et al., “OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3330–3338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Gri, S. Piconese, B. Frossi et al., “CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction,” Immunity, vol. 29, no. 5, pp. 771–781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Seshasayee, W. P. Lee, M. Zhou et al., “In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation,” Journal of Clinical Investigation, vol. 117, no. 12, pp. 3868–3878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. L. de Lapuente, A. Feliu, N. Ugidos et al., “Novel insights into the multiple sclerosis risk gene ANKRD55,” The Journal of Immunology, vol. 196, no. 11, pp. 4553–4565, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Bohan and J. B. Peter, “Polymyositis and dermatomyositis - I,” New England Journal of Medicine, vol. 292, no. 7, pp. 344–347, 1975. View at Publisher · View at Google Scholar · View at Scopus
  31. A. D. Skol, L. J. Scott, G. R. Abecasis, and M. Boehnke, “Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies,” Nature Genetics, vol. 38, no. 2, pp. 209–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Sugiura, Y. Kawaguchi, K. Goto et al., “Positive association between STAT4 polymorphisms, and polymyositis/ dermatomyositis in a Japanese population,” Annals of the Rheumatic Diseases, vol. 71, no. 10, pp. 1646–1650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Chen, Q. Wang, Z. Wu et al., “Genetic association study of TNFAIP3, IFIH1, IRF5 polymorphisms with polymyositis/dermatomyositis in Chinese Han population,” PLoS ONE, vol. 9, no. 10, Article ID e110044, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Freudenberg, P. Gregersen, and W. Li, “Enrichment of genetic variants for rheumatoid arthritis within T-cell and NK-cell enhancer regions,” Molecular Medicine, vol. 21, pp. 180–184, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Alloza, D. Otaegui, A. L. De Lapuente et al., “ANKRD55 and DHCR7 are novel multiple sclerosis risk loci,” Genes and Immunity, vol. 13, no. 3, pp. 253–257, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Gramaglia, A. D. Weinberg, M. Lemon, and M. Croft, “Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses,” Journal of Immunology, vol. 161, no. 12, pp. 6510–6517, 1998. View at Google Scholar · View at Scopus
  37. K. H. Chua, Y. Y. Ooh, and H. C. Chai, “TNFSF4 polymorphisms are associated with systemic lupus erythematosus in the Malaysian population,” International Journal of Immunogenetics, vol. 43, no. 5, pp. 303–309, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. K. Chang, W. Yang, M. Zhao et al., “Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese,” Genes and Immunity, vol. 10, no. 5, pp. 414–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Gourh, F. C. Arnett, F. K. Tan et al., “Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 69, no. 3, pp. 550–555, 2010. View at Publisher · View at Google Scholar · View at Scopus