Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017 (2017), Article ID 4754701, 7 pages
https://doi.org/10.1155/2017/4754701
Research Article

Preemptive Analgesic and Antioxidative Effect of Curcumin for Experimental Migraine

1Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 4-6, 400012 Cluj-Napoca, Romania
2Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., No. 6, 400349 Cluj-Napoca, Romania
3Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 43, 400012 Cluj-Napoca, Romania

Correspondence should be addressed to Sorana D. Bolboacă; or.julcfmu@acaoblobs

Received 23 June 2017; Revised 11 September 2017; Accepted 24 September 2017; Published 24 October 2017

Academic Editor: Sergio Claudio Saccà

Copyright © 2017 Adriana E. Bulboacă et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. F. Gasparini, H. G. Sutherland, and L. R. Griffiths, “Studies on the pathophysiology and genetic basis of migraine,” Current Genomics, vol. 14, no. 5, pp. 300–315, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. M. F. DosSantos, R. C. Holanda-Afonso, R. L. Lima, A. F. DaSilva, and V. Moura-Neto, “The role of the blood–brain barrier in the development and treatment of migraine and other pain disorders,” Frontiers in Cellular Neuroscience, vol. 8, article no. 302, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Neri, A. Frustaci, M. Milic et al., “A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine,” Cephalalgia, vol. 35, no. 10, pp. 931–937, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Buzzi and C. Tassorelli, “Experimental models of migraine,” Handbook of Clinical Neurology, vol. 97, no. C, pp. 109–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. De Tommaso, G. Libro, M. Guido et al., “Nitroglycerin induces migraine headache and central sensitization phenomena in patients with migraine without aura: A study of laser evoked potentials,” Neuroscience Letters, vol. 363, no. 3, pp. 272–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Biondi, “Is migraine a neuropathic pain syndrome?” Current Pain and Headache Reports, vol. 10, no. 3, pp. 167–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhang, G. Shao, W. Zhang et al., “Gabapentin inhibits central sensitization during migraine,” Neural Regeneration Research, vol. 8, no. 32, pp. 3003–3012, 2013. View at Publisher · View at Google Scholar
  8. M. G. Buzzi, C. Tassorelli, and G. Nappi, “Peripheral and central activation of trigeminal pain pathways in migraine: Data from experimental animal models,” Cephalalgia, Supplement, vol. 23, no. 1, pp. 1–4, 2003. View at Google Scholar · View at Scopus
  9. A. Tjølsen, O.-G. Berge, S. Hunskaar, J. H. Rosland, and K. Hole, “The formalin test: an evaluation of the method,” PAIN, vol. 51, no. 1, pp. 5–17, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Greco, A. S. Mangione, G. Sandrini, M. Maccarrone, G. Nappi, and C. Tassorelli, “Effects of anandamide in migraine: Data from an animal model,” The Journal of Headache and Pain, vol. 12, no. 2, pp. 177–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Gilmore and M. Michael, “Treatment of acute migraine headache,” American Family Physician, vol. 83, no. 3, pp. 271–280, 2011. View at Google Scholar · View at Scopus
  12. E. Salisbury-Afshar, “Topiramate for the prophylaxis of episodic migraine in adults,” American Family Physician, vol. 90, no. 1, Article ID CD010610, p. 24, 2014. View at Google Scholar · View at Scopus
  13. S. A. Factor, J. Jankovic, B. W. Friedman, L. Garber, and E. J. Gallagher, “Randomized trial of iv valproate vs metoclopramide vs ketorolac for acute migraine,” Neurology, vol. 83, no. 15, pp. 1388-1389, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Evers, J. Áfra, A. Frese et al., “EFNS guideline on the drug treatment of migraine—revised report of an EFNS task force,” European Journal of Neurology, vol. 16, no. 9, pp. 968–981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Casucci, V. Villani, and F. Frediani, “Central mechanism of action of antimigraine prophylactic drugs,” Neurological Sciences, vol. 29, no. 1, pp. S123–S126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Dussor, “ASICs as therapeutic targets for migraine,” Neuropharmacology, vol. 94, pp. 64–71, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. F. G. Freitag, “The cycle of migraine: patients' quality of life during and between migraine attacks,” Clinical Therapeutics, vol. 29, no. 5, pp. 939–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Bulboacă, S. D. Bolboacă, and H. S. Suciu, “Protective effect of curcumin in fructose-induced metabolic syndrome and in streptozotocin-induced diabetes in rats,” Iranian Journal of Basic Medical Sciences, vol. 19, no. 6, pp. 585–593, 2016. View at Google Scholar · View at Scopus
  19. K. G. Shields and P. J. Goadsby, “Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: A role in migraine?” Brain, vol. 128, no. 1, pp. 86–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. R. Saxena and M. O. Den Boer, “Pharmacology of antimigraine drugs,” Journal of Neurology, vol. 238, no. 1, pp. S28–S35, 1991. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Tassorelli, R. Greco, D. Wang, G. Sandrini, and G. Nappi, “Prostaglandins, glutamate and nitric oxide synthase mediate nitroglycerin-induced hyperalgesia in the formalin test,” European Journal of Pharmacology, vol. 534, no. 1-3, pp. 103–107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Nonose, J. A. Pereira, P. R. M. Machado, M. R. Rodrigues, D. T. Sato, and C. A. R. Martinez, “Oral administration of curcumin (Curcuma longa) can attenuate the neutrophil inflammatory response in zymosan-induced arthritis in rats,” Acta Cirurgica Brasileira, vol. 29, no. 11, pp. 727–734, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. L. F. Valdivia, D. Centurión, M. Perusquía, U. Arulmani, P. R. Saxena, and C. M. Villalón, “Pharmacological analysis of the mechanisms involved in the tachycardic and vasopressor responses to the antimigraine agent, isometheptene, in pithed rats,” Life Sciences, vol. 74, no. 26, pp. 3223–3234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. B. V. Owoyele, R. O. Oladejo, K. Ajomale, R. O. Ahmed, and A. Mustapha, “Analgesic and anti-inflammatory effects of honey: The involvement of autonomic receptors,” Metabolic Brain Disease, vol. 29, no. 1, pp. 167–173, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Joe, A. Nagaraju, L. R. Gowda, V. Basrur, and B. R. Lokesh, “Mass-spectrometric identification of T-kininogen I/thiostatin as an acute-phase inflammatory protein suppressed by curcumin and capsaicin,” PLoS ONE, vol. 9, no. 10, Article ID e107565, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Hunskaar and K. Hole, “The formalin test in mice: dissociation between inflammatory and non-inflammatory pain,” PAIN, vol. 30, no. 1, pp. 103–114, 1987. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Amani, N. Ali, B. Reza, and K. Ali, “Effect of ascorbic acid supplementation on nitric oxide metabolites and systolic blood pressure in rats exposed to lead,” Indian Journal of Pharmacology, vol. 42, no. 2, pp. 78–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Aebi, “Assay for blood plasma and serum peroxides,” Methods in Enzymology, vol. 105, pp. 28–31, 1984. View at Publisher · View at Google Scholar · View at Scopus
  29. G. L. Ellman, “A colorimetric method for determining low concentrations of mercaptans,” Archives of Biochemistry and Biophysics, vol. 74, no. 2, pp. 443–450, 1958. View at Publisher · View at Google Scholar · View at Scopus
  30. A. E. Parvu, M. Parvu, L. Vlase, P. Miclea, A. C. Mot, and R. Silaghi-Dumitrescu, “Anti-inflammatory effects of Allium schoenoprasum L. leaves,” Journal of Physiology and Pharmacology, vol. 65, no. 2, pp. 309–315, 2014. View at Google Scholar · View at Scopus
  31. T. Segawa, N. Miyakoshi, Y. Kasukawa, H. Aonuma, H. Tsuchie, and Y. Shimada, “Analgesic effects of minodronate on formalin-induced acute inflammatory pain in rats,” Biomedical Research (Japan), vol. 34, no. 3, pp. 137–141, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. M. I. Ortiz, “Metformin and phenformin block the peripheral antinociception induced by diclofenac and indomethacin on the formalin test,” Life Sciences, vol. 90, no. 1-2, pp. 8–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. L.-A. Pini, G. Vitale, and M. Sandrini, “Serotonin and opiate involvement in the antinociceptive effect of acetylsalicylic acid,” Pharmacology, vol. 54, no. 2, pp. 84–91, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Tassorelli, R. Greco, D. Wang, M. Sandrini, G. Sandrini, and G. Nappi, “Nitroglycerin induces hyperalgesia in rats - A time-course study,” European Journal of Pharmacology, vol. 464, no. 2-3, pp. 159–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Greco, F. Siani, C. Demartini et al., “Andrographis paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine,” Functional Neurology, vol. 31, no. 1, pp. 53–60, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Ruggieri, G. Vitale, M. Filaferro, C. Frigeri, L. A. Pini, and M. Sandrini, “The antinociceptive effect of acetylsalicylic acid is differently affected by a CB1 agonist or antagonist and involves the serotonergic system in rats,” Life Sciences, vol. 86, no. 13-14, pp. 510–517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. J. Merino, C. Arce, A. Naddaf, V. Bellver-Landete, M. J. Oset-Gasque, and M. P. González, “The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels,” PLoS ONE, vol. 9, no. 3, Article ID e90703, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Ma and J. P. Long, “Central noradrenergic activity is responsible for nitroglycerin-induced cardiovascular effects in the nucleus tractus solitarii,” Brain Research, vol. 559, no. 2, pp. 297–303, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Shimizu, “β blockers in migraine prophylaxis,” Brain and Nerve, vol. 61, no. 10, pp. 1125–1130, 2009. View at Google Scholar · View at Scopus
  40. N. T. Mathew, “Pathophysiology of chronic migraine and mode of action of preventive medications,” Headache: The Journal of Head and Face Pain, vol. 51, no. 2, pp. 84–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. M. Gardiner, J. E. March, P. A. Kemp, and T. Bennett, “Involvement of CB1-receptors and β-adrenoceptors in the regional hemodynamic responses to lipopolysaccharide infusion in conscious rats,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 288, no. 5, pp. H2280–H2288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Koeda, J. Sato, T. Kumazawa, Y. Tsujii, and K. Mizumura, “Effects of adrenoceptor antagonists on the cutaneous blood flow increase response to sympathetic nerve stimulation in rats with persistent inflammation,” The Japanese Journal of Physiology, vol. 52, no. 6, pp. 521–530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Nishio, Y. Nagakura, and T. Segawa, “Interactions of carteolol and other β-adrenoceptor blocking agents with serotonin receptor subtypes,” Archives Internationales de Pharmacodynamie et de Thérapie, vol. 302, pp. 96–106, 1989. View at Google Scholar · View at Scopus
  44. A. Gomes, D. Costa, J. L. Lima, and E. Fernandes, “Antioxidant activity of beta-blockers: an effect mediated by scavenging reactive oxygen and nitrogen species?” Bioorganic Medicinal Chemistry, vol. 14, no. 13, pp. 4568–4577, 2006. View at Publisher · View at Google Scholar
  45. P. Sarchielli, A. Alberti, M. Codini, A. Floridi, and V. Gallai, “Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks,” Cephalalgia, vol. 20, no. 10, pp. 907–918, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. G. M. Pitcher and J. L. Henry, “Mediation and modulation by eicosanoids of responses of spinal dorsal horn neurons to glutamate and substance P receptor agonists: Results with indomethacin in the rat in vivo,” Neuroscience, vol. 93, no. 3, pp. 1109–1121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Yamamoto and N. Nozaki-Taguchi, “Analysis of the effects of cyclooxygenase (COX)-1 and COX-2 in spinal nociceptive transmission using indomethacin, a non-selective COX inhibitor, and NS-398, a COX-2 selective inhibitor,” Brain Research, vol. 739, no. 1-2, pp. 104–110, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. U. Herzberg, A. Hama, and J. Sagen, “Spinal subarachnoid adrenal medullary transplants reduce hind paw swelling and peripheral nerve transport following formalin injection in rats,” Brain Research, vol. 1198, pp. 85–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Mittal, R. Joshi, D. Hota, and A. Chakrabarti, “Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat,” Phytotherapy Research, vol. 23, no. 4, pp. 507–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. X. Di, C. Hong, L. Jun, G. Renshan, and L. Qinquan, “Curcumin attenuates mechanical and thermal hyperalgesia in chronic constrictive injury model of neuropathic pain,” Pain and Therapy, vol. 3, no. 1, pp. 59–69, 2014. View at Publisher · View at Google Scholar
  51. J. H. Lee, Y. D. Kim, H. C. Jung, and Y. K. Cheong, “The effect of intrathecal curcumin on mechanical allodynia in rats after L5 spinal nerve ligation,” Korean Journal of Anesthesiology, vol. 67, pp. S122–S123, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. K. Han, S. H. Lee, H. J. Jeong, M. S. Kim, M. H. Yoon, and W. M. Kim, “Analgesic effects of intrathecal curcumin in the rat formalin test,” The Korean Journal of Pain, vol. 25, no. 1, pp. 1–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Puig and L. S. Sorkin, “Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity,” PAIN, vol. 64, no. 2, pp. 345–355, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Di Pierro, G. Rapacioli, E. A. Di Maio, G. Appendino, F. Franceschi, and S. Togni, “Comparative evaluation of the pain-relieving properties of a lecithinized formulation of curcumin (Meriva®), nimesulide, and acetaminophen,” Journal of Pain Research, vol. 6, pp. 201–205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Ciftci, A. Aksoy, S. cenesiz et al., “Therapeutic role of curcumin in oxidative DNA damage caused by formaldehyde,” Microscopy Research and Technique, vol. 78, no. 5, pp. 391–395, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. S. K. Borra, J. Mahendra, P. Gurumurthy, Jayamathi, S. S. Iqbal, and L. Mahendra, “Effect of curcumin against oxidation of biomolecules by hydroxyl radicals,” Journal of Clinical and Diagnostic Research, vol. 8, no. 10, pp. CC01–CC05, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Sharma, S. K. Kulkarni, J. N. Agrewala, and K. Chopra, “Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain,” European Journal of Pharmacology, vol. 536, no. 3, pp. 256–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. Y.-P. Huang, H.-Y. Jin, and H.-P. Yu, “Inhibitory effects of alpha-lipoic acid on oxidative stress in the rostral ventrolateral medulla in rats with salt-induced hypertension,” International Journal of Molecular Medicine, vol. 39, no. 2, pp. 430–436, 2017. View at Publisher · View at Google Scholar · View at Scopus