Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017 (2017), Article ID 6970631, 8 pages
https://doi.org/10.1155/2017/6970631
Review Article

Metabolomics and Cardiology: Toward the Path of Perinatal Programming and Personalized Medicine

1Department of Surgery, Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, University of Cagliari, Policlinico Universitario, Strada Statale 554, Km 4.500, Bivio di Sestu, Monserrato, 09042 Cagliari, Italy
2Department of Medical Sciences “M. Aresu”, Unit of Cardiology and Angiology, University of Cagliari, Policlinico Universitario, Strada Statale 554, Km 4.500, Bivio di Sestu, Monserrato, 09042 Cagliari, Italy

Correspondence should be addressed to Angelica Dessì; ti.liamtoh@issedacilegna

Received 3 February 2017; Revised 15 May 2017; Accepted 28 May 2017; Published 3 July 2017

Academic Editor: Peter J. Oefner

Copyright © 2017 Roberta Pintus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO sites about Cardiovascular diseases available on line from September 2016, http://www.who.org/.
  2. P. P. Bassareo, L. Saba, P. Solla, C. Barbanti, A. R. Marras, and G. Mercuro, “Factors influencing adaptation and performance at physical exercise in complex congenital heart diseases after surgical repair,” BioMed Research International, vol. 2014, Article ID 862372, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Brown, J. B. Perry, M. E. Allen et al., “Expert consensus document: Mitochondrial function as a therapeutic target in heart failure,” Nature Reviews Cardiology, vol. 14, no. 4, pp. 238–250, 2016. View at Publisher · View at Google Scholar
  4. M. Deidda, C. Piras, C. C. Dessalvi et al., “Metabolomic approach to profile functional and metabolic changes in heart failure,” Journal of Translational Medicine, vol. 13, no. 1, article 297, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Griffin, H. Atherton, J. Shockcor, and L. Atzori, “Metabolomics as a tool for cardiac research,” Nature Reviews Cardiology, vol. 8, no. 11, pp. 630–643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. I. Ellis, W. B. Dunn, J. L. Griffin, J. W. Allwood, and R. Goodacre, “Metabolic fingerprinting as a diagnostic tool,” Pharmacogenomics, vol. 8, no. 9, pp. 1243–1266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Feng, Z. Liu, S. Zhong et al., “Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease,” Scientific Reports, vol. 6, Article ID 22525, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Ahmad, J. P. Kelly, R. W. McGarrah et al., “Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support,” Journal of the American College of Cardiology, vol. 67, no. 3, pp. 291–299, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Oni-Orisan, M. L. Edin, J. A. Lee et al., “Cytochrome P450-derived epoxyeicosatrienoic acids and coronary artery disease in humans: a targeted metabolomics study,” Journal of Lipid Research, vol. 57, no. 1, pp. 109–119, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. B. N. Zordoky, M. M. Sung, J. Ezekowitz et al., “Metabolomic fingerprint of heart failure with preserved ejection fraction,” PLoS ONE, vol. 10, no. 5, Article ID e0124844, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. M.-L. Cheng, C.-H. Wang, M.-S. Shiao et al., “Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: Diagnostic and prognostic value of metabolomics,” Journal of the American College of Cardiology, vol. 65, no. 15, pp. 1509–1520, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Würtz, A. S. Havulinna, P. Soininen et al., “Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts,” Circulation, vol. 131, no. 9, pp. 774–785, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Zhong, J.-P. Zhang, A.-G. Nuermaimaiti, and K.-X. Yunusi, “Study on plasmatic metabolomics of Uygur patients with essential hypertension based on nuclear magnetic resonance technique,” European Review for Medical and Pharmacological Sciences, vol. 18, no. 23, pp. 3673–3680, 2014. View at Google Scholar · View at Scopus
  14. A. A. M. Vaarhorst, A. Verhoeven, C. M. Weller et al., “A metabolomic profile is associated with the risk of incident coronary heart disease,” American Heart Journal, vol. 168, no. 1, pp. 45–e7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Shi, H. Zhao, and J. Chen, “Study on Qi deficiency syndrome identification modes of coronary heart disease based on metabolomic biomarkers,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 281829, 15 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Rizza, M. Copetti, C. Rossi et al., “Metabolomics signature improves the prediction of cardiovascular events in elderly subjects,” Atherosclerosis, vol. 232, no. 2, pp. 260–264, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kalim, C. B. Clish, J. Wenger et al., “A plasma long-chain acylcarnitine predicts cardiovascular mortality in incident dialysis patients,” Journal of the American Heart Association, vol. 2, no. 6, Article ID e000542, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Tenori, X. Hu, P. Pantaleo et al., “Metabolomic fingerprint of heart failure in humans: a nuclear magnetic resonance spectroscopy analysis,” International Journal of Cardiology, vol. 168, no. 4, pp. e113–e115, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Desmoulin, M. Galinier, C. Trouillet et al., “Metabonomics Analysis of Plasma Reveals the Lactate to Cholesterol Ratio as an Independent Prognostic Factor of Short-Term Mortality in Acute Heart Failure,” PLoS ONE, vol. 8, no. 4, Article ID e60737, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Samara, W. H. W. Tang, F. Cikach Jr. et al., “Single exhaled breath metabolomic analysis identifies unique breathprint in patients with acute decompensated heart failure,” Journal of the American College of Cardiology, vol. 61, no. 13, pp. 1463-1464, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Magnusson, G. D. Lewis, U. Ericson et al., “A diabetes-predictive amino acid score and future cardiovascular disease,” European Heart Journal, vol. 34, no. 26, pp. 1982–1989, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Bodi, J. Sanchis, J. M. Morales et al., “Metabolomic profile of human myocardial ischemia by nuclear magnetic resonance spectroscopy of peripheral blood serum: a translational study based on transient coronary occlusion models,” Journal of the American College of Cardiology, vol. 59, no. 18, pp. 1629–1641, 2012. View at Publisher · View at Google Scholar
  23. S.-M. Kang, J.-C. Park, M.-J. Shin et al., “1H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure,” Clinical Biochemistry, vol. 44, no. 4, pp. 293–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Ussher, S. Elmariah, R. E. Gerszten, and J. R. B. Dyck, “The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease,” Journal of the American College of Cardiology, vol. 68, no. 25, pp. 2850–2870, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. P. Barker, “The developmental origins of well-being,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1449, pp. 1359–1366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. P. P. Bassareo, M. Puddu, G. Flore et al., “Could ADMA levels in young adults born preterm predict an early endothelial dysfunction?” International Journal of Cardiology, vol. 159, no. 3, pp. 217–219, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. P. P. Bassareo, V. Fanos, M. Puddu, C. Cadeddu, M. Balzarini, and G. Mercuro, “Significant QT interval prolongation and long QT in young adult ex-preterm newborns with extremely low birth weight,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 24, no. 9, pp. 115–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. P. P. Bassareo, V. Fanos, M. Puddu et al., “Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: A condition predictive of increased cardiovascular risk?” Journal of Maternal-Fetal and Neonatal Medicine, vol. 23, no. 3, pp. 121–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. P. Bassareo, V. Fanos, M. Mussap et al., “Urinary NGAL and hematic ADMA levels: An early sign of cardio-renal syndrome in young adults born preterm?” Journal of Maternal-Fetal and Neonatal Medicine, vol. 26, no. 2, pp. 80–83, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. P. P. Bassareo, A. R. Marras, L. Cugusi, A. M. Zedda, and G. Mercuro, “The reasons why cardiologists should consider prematurity at birth and intrauterine growth retardation among risk factors,” Journal of Cardiovascular Medicine, vol. 17, no. 5, pp. 323–329, 2016. View at Publisher · View at Google Scholar · View at Scopus
  31. R. O. Bahado-Singh, R. Ertl, R. Mandal et al., “Metabolomic prediction of fetal congenital heart defect in the first trimester,” American Journal of Obstetrics and Gynecology, vol. 211, no. 3, pp. 240.e1–240.e14, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. D. W. Kemper, V. Semjonow, F. de Theije et al., “Analytical evaluation of a new point of care system for measuring cardiac Troponin I,” Clinical Biochemistry, vol. 50, no. 4-5, pp. 174–180, 2017. View at Publisher · View at Google Scholar
  33. M. S. Klein, K. E. Connors, J. Shearer, H. J. Vogel, and D. S. Hittel, “Metabolomics reveals the sex-specific effects of the sort1 low-density lipoprotein cholesterol locus in healthy young adults,” Journal of Proteome Research, vol. 13, no. 11, pp. 5063–5070, 2014. View at Publisher · View at Google Scholar
  34. G. Sharon, N. Garg, J. Debelius, R. Knight, P. C. Dorrestein, and S. K. Mazmanian, “Specialized metabolites from the microbiome in health and disease,” Cell Metabolism, vol. 20, no. 5, pp. 719–730, 2014. View at Publisher · View at Google Scholar
  35. K. B. Martinez, V. Leone, and E. B. Chang, “Microbial metabolites in health and disease: Navigating the unknown in search of function,” Journal of Biological Chemistry, vol. 292, no. 21, pp. 8553–8559, 2017. View at Publisher · View at Google Scholar
  36. L. Guoa, M. V. Milburna, J. A. Ryalsa et al., “Plasma metabolomic profiles enhance precision medicine for volunteers of normal health,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 35, pp. E4901–E4910, 2015. View at Publisher · View at Google Scholar · View at Scopus
  37. W. R. Russell, L. Hoyles, H. J. Flint, and M.-E. Dumas, “Colonic bacterial metabolites and human health,” Current Opinion in Microbiology, vol. 16, no. 3, pp. 246–254, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. A. L. Jonsson and F. Bäckhed, “Role of gut microbiota in atherosclerosis,” Nature Reviews Cardiology, vol. 14, no. 2, pp. 79–87, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Fanos, L. Barberini, R. Antonucci, and L. Atzori, “Metabolomics in neonatology and pediatrics,” Clinical Biochemistry, vol. 44, no. 7, pp. 452–454, 2011. View at Publisher · View at Google Scholar · View at Scopus