Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 7120785, 7 pages
https://doi.org/10.1155/2017/7120785
Research Article

Time Evolution of Sublingual Microcirculatory Changes in Recreational Marathon Runners

1Department of Intensive Care Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
2Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
3Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
4Department of Disaster Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
5Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania

Correspondence should be addressed to Andrius Pranskunas; moc.liamg@sanuksnarp.a

Received 26 February 2017; Revised 28 May 2017; Accepted 12 June 2017; Published 30 July 2017

Academic Editor: Natale Daniele Brunetti

Copyright © 2017 Andrius Pranskunas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. D. Thompson, D. Buchner, I. L. Piña et al., “Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: A statement from the council on clinical cardiology (subcommittee on exercise, rehabilitation, and prevention) and the council on nutrition, physical activity, and metabolism (subcommittee on physical activity),” Circulation, vol. 107, no. 24, pp. 3109–3116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Möhlenkamp, N. Lehmann, F. Breuckmann et al., “Running: the risk of coronary events—prevalence and prognostic relevance of coronary atherosclerosis in marathon runners,” European Heart Journal, vol. 29, no. 15, pp. 1903–1910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Joggerst, J. Monge, C. Uribe, S. Sherron, and P. Angelini, “Sudden cardiac arrest at the finish line: In coronary ectopia, the cause of ischemia is from intramural course, not ostial location,” Texas Heart Institute Journal, vol. 41, no. 2, pp. 212–216, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. H. P. F. Peters, M. Bos, L. Seebregts et al., “Gastrointestinal symptoms in long-distance runners, cyclists, and triathletes: prevalence, medication, and etiology,” The American Journal of Gastroenterology, vol. 94, no. 6, pp. 1570–1581, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. R. W. F. Ter Steege, J. Van Der Palen, and J. J. Kolkman, “Prevalence of gastrointestinal complaints in runners competing in a long-distance run: An internet-based observational study in 1281 subjects,” Scandinavian Journal of Gastroenterology, vol. 43, no. 12, pp. 1477–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. van Wijck, K. Lenaerts, L. J. C. van Loon, W. H. M. Peters, W. A. Buurman, and C. H. C. Dejong, “Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men,” PLoS ONE, vol. 6, no. 7, Article ID e22366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. E. Marik, “Regional carbon dioxide monitoring to assess the adequacy of tissue perfusion,” Current Opinion in Critical Care, vol. 11, no. 3, pp. 245–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. C. Boerma, P. H. J. Van Der Voort, P. E. Spronk, and C. Ince, “Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis,” Critical Care Medicine, vol. 35, no. 4, pp. 1055–1060, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Pranskunas, V. Pilvinis, Z. Dambrauskas et al., “Early course of microcirculatory perfusion in eye and digestive tract during hypodynamic sepsis,” Critical Care, vol. 16, no. 3, article R83, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince, “Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation,” Optics Express, vol. 15, no. 23, pp. 15101–15114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Aykut, G. Veenstra, C. Scorcella, C. Ince, and C. Boerma, “Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation,” Intensive Care Medicine Experimental, vol. 3, no. 1, article 40, 2015. View at Publisher · View at Google Scholar
  12. D. De Backer, K. Donadello, Y. Sakr et al., “Microcirculatory alterations in patients with severe sepsis: Impact of time of assessment and relationship with outcome,” Critical Care Medicine, vol. 41, no. 3, pp. 791–799, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Sakr, M.-J. Dubois, D. De Backer, J. Creteur, and J.-L. Vincent, “Persistent-microcirculatory alterations are associated with organ failure and death in patients with septic shock,” Critical Care Medicine, vol. 32, no. 9, pp. 1825–1831, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. T. Howley, D. R. Bassett Jr., and H. G. Welch, “Criteria for maximal oxygen uptake: review and commentary,” Medicine and Science in Sports and Exercise, vol. 27, no. 9, pp. 1292–1301, 1995. View at Google Scholar · View at Scopus
  15. J. G. G. Dobbe, G. J. Streekstra, B. Atasever, R. van Zijderveld, and C. Ince, “Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis,” Medical and Biological Engineering and Computing, vol. 46, no. 7, pp. 659–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. C. Boerma, K. R. Mathura, P. H. J. van der Voort, P. E. Spronk, and C. Ince, “Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study,” Critical Care, vol. 9, no. 6, pp. R601–R606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Pranskunas, Z. Pranskuniene, E. Milieskaite et al., “Effects of whole body heat stress on sublingual microcirculation in healthy humans,” European Journal of Applied Physiology, vol. 115, no. 1, pp. 157–165, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. D. De Backer, S. Hollenberg, C. Boerma et al., “How to evaluate the microcirculation: report of a round table conference,” Critical Care, vol. 11, article R101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. van Wijck, K. Lenaerts, J. Grootjans et al., “Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 303, no. 2, pp. G155–G168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. M. I. Qamar and A. E. Read, “Effects of exercise on mesenteric blood flow in man,” Gut, vol. 28, no. 5, pp. 583–587, 1987. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Otte, E. Oostveen, R. H. Geelkerken, A. B. J. Groeneveld, and J. J. Kolkman, “Exercise induces gastric ischemia in healthy volunteers: a tonometry study,” Journal of Applied Physiology, vol. 91, no. 2, pp. 866–871, 2001. View at Google Scholar · View at Scopus
  22. K. L. Pals, R.-T. Chang, A. J. Ryan, and C. V. Gisolfi, “Effect of running intensity on intestinal permeability,” Journal of Applied Physiology, vol. 82, no. 2, pp. 571–576, 1997. View at Google Scholar · View at Scopus
  23. C. Ince, “The microcirculation is the motor of sepsis,” Critical Care, vol. 9, supplement 4, pp. S13–S19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. de Backer, J. Creteur, J.-C. Preiser, M.-J. Dubois, and J.-L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 1, pp. 98–104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Pranskunas, M. Koopmans, P. M. Koetsier, V. Pilvinis, and E. C. Boerma, “Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy,” Intensive Care Medicine, vol. 39, no. 4, pp. 612–619, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Pressler, H. Hanssen, M. Dimitrova, M. Krumm, M. Halle, and J. Scherr, “Acute and chronic effects of marathon running on the retinal microcirculation,” Atherosclerosis, vol. 219, no. 2, pp. 864–868, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Z. Wang, L. L. Stepheson, X. H. Fang, K. T. Khiabani, and W. A. Zamboni, “Ischemic preconditioning-induced microvascular protection at a distance,” Journal of Reconstructive Microsurgery, vol. 20, no. 2, pp. 175–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Jones, N. Hopkins, T. G. Bailey, D. J. Green, N. T. Cable, and D. H. J. Thijssen, “Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans,” American Journal of Hypertension, vol. 27, no. 7, pp. 918–925, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. V. L. Billat, H. Petot, M. Landrain, R. Meilland, J. P. Koralsztein, and L. Mille-Hamard, “Cardiac output and performance during a marathon race in middle-aged recreational runners,” The Scientific World Journal, vol. 2012, Article ID 810859, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. D. J. Green, A. Spence, N. Rowley, D. H. J. Thijssen, and L. H. Naylor, “Vascular adaptation in athletes: is there an ‘athlete's artery’?” Experimental Physiology, vol. 97, no. 3, pp. 295–304, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. V. A. Cornelissen, K. Goetschalckx, B. Verheyden et al., “Effect of endurance training on blood pressure regulation, biomarkers and the heart in subjects at a higher age,” Scandinavian Journal of Medicine and Science in Sports, vol. 21, no. 4, pp. 526–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Otsuki, S. Maeda, M. Iemitsu et al., “Relationship between arterial stiffness and athletic training programs in young adult men,” American Journal of Hypertension, vol. 20, no. 9, pp. 967–973, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kröger, N. Lehmann, L. Rappaport et al., “Carotid and peripheral atherosclerosis in male marathon runners,” Medicine and Science in Sports and Exercise, vol. 43, no. 7, pp. 1142–1147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Schnohr, J. H. O'Keefe, J. L. Marott, P. Lange, and G. B. Jensen, “Dose of jogging and long-term mortality: the Copenhagen City Heart Study,” Journal of the American College of Cardiology, vol. 65, no. 5, pp. 411–419, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. D. C. Lee, R. R. Pate, C. J. Lavie, X. Sui, T. S. Church, and S. N. Blair, “Leisure-time running reduces all-cause and cardiovascular mortality risk,” Journal of the American College of Cardiology, vol. 64, no. 5, pp. 472–481, 2014. View at Publisher · View at Google Scholar