Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 7124817, 9 pages
https://doi.org/10.1155/2017/7124817
Research Article

Effects of Electrostatic Field on Osteoblast Cells for Bone Regeneration Applications

1Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
2Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan

Correspondence should be addressed to Hsu-Wei Fang; wt.ude.tutn@gnafwh

Received 13 July 2017; Revised 20 September 2017; Accepted 27 September 2017; Published 13 November 2017

Academic Editor: Liping Wang

Copyright © 2017 Chen-Ying Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Franz-Odendaal, B. K. Hall, and P. E. Witten, “Buried alive: how osteoblasts become osteocytes,” Developmental Dynamics, vol. 235, no. 1, pp. 176–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, “A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,” Biomaterials, vol. 24, no. 12, pp. 2077–2082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Dadsetan, T. Guda, M. B. Runge et al., “Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds,” Acta Biomaterialia, vol. 18, pp. 9–20, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. S. H. Kim, V. J. Johnson, and R. P. Sharma, “Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: Differential modulation of NF-κB and p38 MAPK signaling pathways,” Nitric Oxide: Biology and Chemistry, vol. 7, no. 1, pp. 67–74, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. N. K. Shevde, L. A. Plum, M. Clagett-Dame, H. Yamamoto, J. W. Pike, and H. F. DeLuca, “A potent analog of 1α,25-dihydroxyvitamin D3 selectively induces bone formation,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 99, no. 21, pp. 13487–13491, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. P. Valta, T. Hentunen, Q. Qu et al., “Regulation of osteoblast differentiation: A novel function for fibroblast growth factor 8,” Endocrinology, vol. 147, no. 5, pp. 2171–2182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Hartig, U. Joos, and H.-P. Wiesmann, “Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro,” European Biophysics Journal, vol. 29, no. 7, pp. 499–506, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Zhuang, W. Wang, R. M. Seldes, A. D. Tahernia, H. Fan, and C. T. Brighton, “Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway,” Biochemical and Biophysical Research Communications, vol. 237, no. 2, pp. 225–229, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Wang, Z. Wang, G. Zhang, C. C. Clark, and C. T. Brighton, “Up-regulation of chondrocyte matrix genes and products by electric fields,” Clinical Orthopaedics and Related Research, no. 427, pp. S163–S173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. T. Brighton, W. Wang, R. Seldes, G. Zhang, and S. R. Pollack, “Signal transduction in electrically stimulated bone cells,” The Journal of Bone & Joint Surgery, vol. 83, no. 10, pp. 1514–1523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Heermeier, M. Spanner, J. Träger et al., “Effects of Extremely Low Frequency Electromagnetic Field (EMF) on Collagen Type I mRNA Expression and Extracellular Matrix Synthesis of Human Osteoblastic Cells,” Bioelectromagnetics, vol. 19, no. 4, pp. 222–231, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Selvamurugan, Z. He, D. Rifkin, B. Dabovic, and N. C. Partridge, “Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-,” Stem Cells International, vol. 2017, pp. 1–17, 2017. View at Publisher · View at Google Scholar
  13. L. Cucullo, G. Dini, K. L. Hallene et al., “Very low intensity alternating current decreases cell proliferation,” Glia, vol. 51, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Fang, Y. Sung, C. Su, and C. Chen, “Electrostatic field may regulate proliferation and immune responses of macrophages induced by polyethylene wear particles,” Journal of the Taiwan Institute of Chemical Engineers, vol. 77, pp. 21–29, 2017. View at Publisher · View at Google Scholar
  15. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Huang, S. Yang, J. Shao, and Y.-P. Li, “Signaling and transcriptional regulation in osteoblast commitment and differentiation,” Frontiers in Bioscience, vol. 12, no. 8, pp. 3068–3092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Wang, C. C. Clark, and C. T. Brighton, “Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields,” The Journal of Bone & Joint Surgery, vol. 88, no. 5, pp. 1053–1065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. R. Cho, H. S. Thatte, R. C. Lee, and D. E. Golan, “Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation,” Annals of Biomedical Engineering, vol. 28, no. 3, pp. 234–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. D. C. Colter, R. Class, C. M. DiGirolamo, and D. J. Prockop, “Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 97, no. 7, pp. 3213–3218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. C. E. Murry and G. Keller, “Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development,” Cell, vol. 132, no. 4, pp. 661–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J.-G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, article 530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. F. Clarke, A. Sundaresan, C. R. Vanderburg, M. G. Banigan, and N. R. Pellis, “A three-dimensional tissue culture model of bone formation utilizing rotational co-culture of human adult osteoblasts and osteoclasts,” Acta Biomaterialia, vol. 9, no. 8, pp. 7908–7916, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Bandyopadhyay, K. Tsuji, K. Cox, B. D. Harfe, V. Rosen, and C. J. Tabin, “Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis,” PLoS Genetics, vol. 2, no. 12, article e216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Chen, C. Deng, and Y.-P. Li, “TGF-beta and BMP signaling in osteoblast differentiation and bone formation,” International Journal of Biological Sciences, vol. 8, no. 2, pp. 272–288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Gu, L. Zhang, T. Jin, and R. B. Rutherford, “Identification of Potential Modifiers of Runx2/Cbfa1 Activity in C2C12 Cells in Response to Bone Morphogenetic Protein-7,” Cells Tissues Organs, vol. 176, no. 1-3, pp. 28–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Huang, P.-G. Ren, T. Ma, R. L. Smith, and S. B. Goodman, “Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability,” Cytokine, vol. 51, no. 3, pp. 305–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Noël, D. Gazit, C. Bouquet et al., “Short-Term BMP-2 Expression Is Sufficient for In Vivo Osteochondral Differentiation of Mesenchymal Stem Cells,” Stem Cells, vol. 22, no. 1, pp. 74–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Shen, A. Wei, S. Whittaker et al., “The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro,” Journal of Cellular Biochemistry, vol. 109, no. 2, pp. 406–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Zhang, X. Li, L. Bai et al., “Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study,” Bioelectromagnetics, vol. 34, no. 1, pp. 74–80, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. L.-Y. Sun, D.-K. Hsieh, T.-C. Yu et al., “Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells,” Bioelectromagnetics, vol. 30, no. 4, pp. 251–260, 2009. View at Publisher · View at Google Scholar · View at Scopus