Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 9648496, 16 pages
https://doi.org/10.1155/2017/9648496
Review Article

Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms

1Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
2School of Food Science & Engineering, South China University of Technology, Guangzhou 510640, China

Correspondence should be addressed to Jian-Yong Wu; kh.ude.uylop@uw.gnoy-naij

Received 26 May 2017; Accepted 16 July 2017; Published 14 August 2017

Academic Editor: Yan Li

Copyright © 2017 Ping Geng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Tanaka, Y. Baba, Y. Kataoka et al., “Effects of (−)-epigallocatechin gallate in liver of an animal model of combined (physical and mental) fatigue,” Nutrition, vol. 24, no. 6, pp. 599–603, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. H. Fitts, “Cellular mechanisms of muscle fatigue,” Physiological Reviews, vol. 74, no. 1, pp. 49–94, 1994. View at Google Scholar · View at Scopus
  3. Q. Li, Y. Wang, G. Cai et al., “Antifatigue activity of liquid cultured Tricholoma matsutake mycelium partially via regulation of antioxidant pathway in mouse,” BioMed Research International, vol. 2015, Article ID 562345, 10 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Barros, P. Baptista, L. M. Estevinho, and I. C. F. R. Ferreira, “Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources,” Food Chemistry, vol. 105, no. 1, pp. 179–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Sarikurkcu, B. Tepe, and M. Yamac, “Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir—Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron,” Bioresource Technology, vol. 99, no. 14, pp. 6651–6655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Wang, D. Luo, and Z. Liang, “Structure of polysaccharides from the fruiting body of Hericium erinaceus Pers,” Carbohydrate Polymers, vol. 57, no. 3, pp. 241–247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. G. Kim, D. H. Yoon, W. H. Lee et al., “Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage,” Journal of Ethnopharmacology, vol. 114, no. 3, pp. 307–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Synytsya, K. Míčková, I. Jablonský et al., “Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity,” Carbohydrate Polymers, vol. 76, no. 4, pp. 548–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. P. Wasser, “Current findings, future trends, and unsolved problems in studies of medicinal mushrooms,” Applied Microbiology and Biotechnology, vol. 89, no. 5, pp. 1323–1332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Lindequist, T. H. G. Niedermeyer, and W.-D. Jülich, “The pharmacological potential of mushrooms,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 3, pp. 285–299, 2005. View at Publisher · View at Google Scholar
  11. V. U. Girjal, S. Neelagund, and M. Krishnappa, “Antioxidant properties of the peptides isolated from ganoderma lucidum fruiting body,” International Journal of Peptide Research and Therapeutics, vol. 18, no. 4, pp. 319–325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-C. Huang, M.-C. Hsu, W.-C. Huang, H.-R. Yang, and C.-C. Hou, “Triterpenoid-rich extract from antrodia camphorata improves physical fatigue and exercise performance in mice,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 364741, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Yoshioka, E. Harada, D. Ge et al., “Adenosine isolated from Grifola gargal promotes glucose uptake via PI3K and AMPK signalling pathways in skeletal muscle cells,” Journal of Functional Foods, vol. 33, pp. 268–277, 2017. View at Publisher · View at Google Scholar
  14. T. Islam, X. Yu, and B. Xu, “Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China,” LWT - Food Science and Technology, vol. 72, pp. 423–431, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Grau, J. Casademont, E. Pedrol, J. Fernandez-Sola, F. Cardellach, and N. A. Barros Urbano-Marquez, “Chronic fatigue syndrome: studies on skeletal muscle,” Clinical Neuropathology, vol. 11, no. 6, pp. 329–332, 1992. View at Google Scholar · View at Scopus
  16. B. Rattray, C. Argus, K. Martin, J. Northey, and M. Driller, “Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?” Frontiers in Physiology, vol. 6, article 79, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Nybo, “CNS fatigue and prolonged exercise: effect of glucose supplementation,” Medicine and Science in Sports and Exercise, vol. 35, no. 4, pp. 589–594, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. W. J. Evans and C. P. Lambert, “Physiological basis of fatigue,” American Journal of Physical Medicine & Rehabilitation, vol. 86, no. 1, pp. S29–S46, 2007. View at Publisher · View at Google Scholar
  19. L. J. You, M. M. Zhao, J. M. Regenstein, and J. Y. Ren, “In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion,” Food Chemistry, vol. 124, no. 1, pp. 188–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Bergström, L. Hermansen, E. Hultman, and B. Saltin, “Diet, muscle glycogen and physical performance,” Acta Physiologica Scandinavica, vol. 71, no. 2-3, pp. 140–150, 1967. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Wang, H.-L. Zhang, R. Lu et al., “The decapeptide CMS001 enhances swimming endurance in mice,” Peptides, vol. 29, no. 7, pp. 1176–1182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Zoll, H. Sanchez, B. N'Guessan et al., “Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle,” Journal of Physiology, vol. 543, no. 1, pp. 191–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. P. Ribeiro, V. Hughes, R. A. Fielding, W. Holden, W. Evans, and H. G. Knuttgen, “Metabolic and ventilatory responses to steady state exercise relative to lactate thresholds,” European Journal of Applied Physiology and Occupational Physiology, vol. 55, no. 2, pp. 215–221, 1986. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Ekblom, “Factors determining maximal aerobic power,” Acta Physiologica Scandinavica, vol. 128, no. 556, pp. 15–19, 1986. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Lamou, G. S. Taiwe, A. Hamadou et al., “Antioxidant and antifatigue properties of the aqueous extract of Moringa oleifera in rats subjected to forced swimming endurance test,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 3517824, 9 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Belluardo, H. Westerblad, G. Mudó et al., “Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4,” Molecular and Cellular Neuroscience, vol. 18, no. 1, pp. 56–67, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Jung, I.-H. Kim, and D. Han, “Effect of medicinal plant extracts on forced swimming capacity in mice,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 75–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Yu, Z.-X. Lu, X.-M. Bie, F.-X. Lu, and X.-Q. Huang, “Scavenging and anti-fatigue activity of fermented defatted soybean peptides,” European Food Research and Technology, vol. 226, no. 3, pp. 415–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Song, Y. Wang, M. Teng et al., “Studies on the antifatigue activities of Cordyceps militaris fruit body extract in mouse model,” Evidence-based Complementary and Alternative Medicine, vol. 2015, Article ID 174616, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-H. Suh, I.-Y. Paik, and K. A. Jacobs, “Regulation of blood glucose homeostasis during prolonged exercise,” Molecules and Cells, vol. 23, no. 3, pp. 272–279, 2007. View at Google Scholar · View at Scopus
  31. S.-Y. Lin, J.-B. Liu, and S. Cheng, “Experimental study of anti-fatigue on the functional liquid of chinese traditional medicine,” Food Science, vol. 26, pp. 224–226, 2005. View at Google Scholar
  32. T. Li and W. Li, “Impact of polysaccharides from Cordyceps on anti-fatigue in mice,” Scientific Research and Essays, vol. 4, no. 7, pp. 705–709, 2009. View at Google Scholar · View at Scopus
  33. W. Wei, L. Zheng, M. Yu, N. Jiang, Z. Yang, and X. Luo, “Anti-fatigue activity of extract form the submerged fermentation of Ganoderma Lucidum using Radix astragali as substrate,” Journal of Animal and Plant Sciences (JAPS), vol. 6, no. 3, pp. 677–684, 2010. View at Google Scholar
  34. C. Tsopanakis and A. Tsopanakis, “Stress hormonal factors, fatigue, and antioxidant responses to prolonged speed driving,” Pharmacology Biochemistry and Behavior, vol. 60, no. 3, pp. 747–751, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Liang, X. C. Zhang, Z. S. Liu, and Q. S. Liu, “Effect of food and medicine fungi on anti-fatigue in mice,” Chinese Agricultural Science Bulletin, vol. 20, no. 1, pp. 135–137, 2004. View at Google Scholar
  36. L.-Y. Wu, M.-F. Wu, H.-F. Lu et al., “Evaluation of hirsutella sinensis mycelium for antifatigue effect,” In Vivo, vol. 29, no. 2, pp. 263–267, 2015. View at Google Scholar
  37. J.-Y. Wu, H.-P. Leung, W.-Q. Wang, and C.-P. Xu, “Mycelial fermentation characteristics and anti-fatigue activities of a Chinese caterpillar fungus, ophiocordyceps sinensis strain Cs-HK1 (Ascomycetes),” International Journal of Medicinal Mushrooms, vol. 16, no. 2, pp. 105–114, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. C.-L. Wang, L. Zhang, Y.-G. Zu, and Y. Huang, “Study on the anti-fatigue effect of water extract from agaricus bisporus,” Science and Technology of Food Industry, vol. 32, no. 5, article 417, pp. 379-380, 2011. View at Google Scholar
  39. R. Kumar, P. S. Negi, B. Singh, G. Ilavazhagan, K. Bhargava, and N. K. Sethy, “Cordyceps sinensis promotes exercise endurance capacity of rats by activating skeletal muscle metabolic regulators,” Journal of Ethnopharmacology, vol. 136, no. 1, pp. 260–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. D. G. Hardie and K. Sakamoto, “AMPK: a key sensor of fuel and energy status in skeletal muscle,” Physiology, vol. 21, no. 1, pp. 48–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Lin, H. Wu, P. T. Tarr et al., “Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres,” Nature, vol. 418, no. 6899, pp. 797–801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. X. Wang, C. L. Zhang, R. T. Yu et al., “Regulation of muscle fiber type and running endurance by PPARδ,” PLoS Biology, vol. 2, no. 10, article e294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J.-H. Seo, Y.-H. Sung, K.-J. Kim, M.-S. Shin, E.-K. Lee, and C.-J. Kim, “Effects of Phellinus linteus administration on serotonin synthesis in the brain and expression of monocarboxylate transporters in the muscle during exhaustive exercise in rats,” Journal of Nutritional Science and Vitaminology, vol. 57, no. 1, pp. 95–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. I.-K. Lee, Y.-S. Kim, Y.-W. Jang, J.-Y. Jung, and B.-S. Yun, “New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 24, pp. 6678–6681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman, “Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 4, pp. 1620–1624, 1990. View at Publisher · View at Google Scholar · View at Scopus
  46. C.-H. Dong and Y.-J. Yao, “In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis,” LWT - Food Science and Technology, vol. 41, no. 4, pp. 669–677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Joseph, B. Sabulal, V. George, T. P. Smina, and K. K. Janardhanan, “Antioxidative and antiinflammatory activities of the chloroform extract of Ganoderma lucidum found in South India,” Scientia Pharmaceutica, vol. 77, no. 1, pp. 111–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Chen, “Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro,” Carbohydrate Polymers, vol. 81, no. 2, pp. 420–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Yu, Y. LiHua, Y. Qian, and L. Yan, “Effect of Lentinus edodes polysaccharide on oxidative stress, immunity activity and oral ulceration of rats stimulated by phenol,” Carbohydrate Polymers, vol. 75, no. 1, pp. 115–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Y. Ma, L. He, and L. F. Yao, “Research advances on structural characteristics and bioactivity of T. fuciformis polysaccharides,” Food Science, vol. 31, no. 23, pp. 411–416, 2010. View at Google Scholar
  51. J.-M. Savoie, N. Minvielle, and M. L. Largeteau, “Radical-scavenging properties of extracts from the white button mushroom, Agaricus bisporus,” Journal of the Science of Food and Agriculture, vol. 88, no. 6, pp. 970–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. R. E. Klabunde, Cardiovascular Physiology Concepts, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2011.
  53. M. G. Feng, Q. G. Zhou, and G. H. Feng, “Vasodilating effect of cultured Cordyceps sinensis (Berk) Sacc. mycelia in anesthetized dogs,” Zhong Yao Tong Bao, vol. 12, no. 12, pp. 41–60, 1987. View at Google Scholar · View at Scopus
  54. A. S. Most, N. A. Ruocco Jr., and H. Gewirtz, “Effect of a reduction in blood viscosity on maximal myocardial oxygen delivery distal to a moderate coronary stenosis,” Circulation, vol. 74, no. 5, pp. 1085–1092, 1986. View at Publisher · View at Google Scholar · View at Scopus
  55. S.-Y. Wang, M.-L. Hsu, H.-C. Hsu et al., “The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes,” International Journal of Cancer, vol. 70, no. 6, pp. 699–705, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Jia and B. H. S. Lau, “The immuno-enhancing effect of Chinese herbal medicine Cordyceps sinensis on macrophage J774,” Zhongguo Yao Xue Za Zhi (Zhongguo Yao Xue Hui: 1989), vol. 32, no. 3, pp. 142–144, 1997. View at Google Scholar
  57. G. Z. Chen, G. L. Chen, and C. M. Tong, “Effect of alcoholic extract C. sinensis on T-lymphocyte subsets,” Journal of Central South University (Medical Science, vol. 12, no. 4, pp. 311–314, 1987. View at Google Scholar
  58. T. Mao, J. Van De Water, C. L. Keen, J. S. Stern, R. Hackman, and M. E. Gershwin, “Two mushrooms, Grifola frondosa and Ganoderma lucidum, can stimulate cytokine gene expression and proliferation in human T lymphocytes,” International Journal of Immunotherapy, vol. 15, no. 1, pp. 13–22, 1999. View at Google Scholar · View at Scopus
  59. D. Wu, M. Pae, Z. Ren, Z. Guo, D. Smith, and S. N. Meydani, “Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice,” Journal of Nutrition, vol. 137, no. 6, pp. 1472–1477, 2007. View at Google Scholar · View at Scopus
  60. A. Morgentaler, Testosterone for Life: Recharge Your Vitality, Sex Drive, Muscle Mass, and Overall Health, McGraw-Hill Professional, New York, NY, USA, 2008.
  61. B.-M. Huang, C.-C. Hsu, S.-J. Tsai, C.-C. Sheu, and S.-F. Leu, “Effects of Cordyceps sinensis on testosterone production in normal mouse Leydig cells,” Life Sciences, vol. 69, no. 22, pp. 2593–2602, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Liu, K. Shimizu, F. Konishi et al., “Anti-androgenic activities of the triterpenoids fraction of Ganoderma lucidum,” Food Chemistry, vol. 100, no. 4, pp. 1691–1696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Manabe, M. Sugimoto, Y. Azuma et al., “Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism in the mouse,” Japanese Journal of Pharmacology, vol. 70, no. 1, pp. 85–88, 1996. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Wei and C. Zheng, “Effects of Tremella polysaccharides on synthesis of protein and on glycogen content in normal and injured livers of mice,” Acta Pharmacologica Sinica, vol. 7, no. 4, pp. 364–367, 1986. View at Google Scholar · View at Scopus
  65. S. P. Li, G. H. Zhang, Q. Zeng et al., “Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia,” Phytomedicine, vol. 13, no. 6, pp. 428–433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Kiho, A. Yamane, J. Hui, S. Usui, and S. Ukai, “Polysaccharides in fungi. XXXVI.1 Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver,” Biological and Pharmaceutical Bulletin, vol. 19, no. 2, pp. 294–296, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Kiho, H. Morimoto, T. Kobayashi et al., “Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver,” Bioscience, Biotechnology and Biochemistry, vol. 64, no. 2, pp. 417–419, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. S. P. Wasser, “Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides,” Applied Microbiology and Biotechnology, vol. 60, no. 3, pp. 258–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. Z. Zhonghui, Z. Xiaowei, and F. Fang, “Ganoderma lucidum polysaccharides supplementation attenuates exercise-induced oxidative stress in skeletal muscle of mice,” Saudi Journal of Biological Sciences, vol. 21, no. 2, pp. 119–123, 2014. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Bobovčák, R. Kuniaková, J. Gabriž, and J. Majtán, “Effect of pleuran (β-glucan from pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes,” Applied Physiology, Nutrition and Metabolism, vol. 35, no. 6, pp. 755–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Maity, A. K. Nandi, D. K. Manna et al., “Structural characterization and antioxidant activity of a glucan from Meripilus giganteus,” Carbohydrate Polymers, vol. 157, pp. 1237–1245, 2017. View at Publisher · View at Google Scholar
  72. P. Maity, I. K. Sen, P. K. Maji et al., “Structural, immunological, and antioxidant studies of β-glucan from edible mushroom Entoloma lividoalbum,” Carbohydrate Polymers, vol. 123, pp. 350–358, 2015. View at Publisher · View at Google Scholar · View at Scopus
  73. X. L. Xin, Y. L. Shi, and L. H. Yang, “Effects of tremella polysaccharide on isolated skeletal muscular fatigue,” Acta Agriculturae Boreali-Occidentalis Sinica, vol. 2, article 133, pp. 128–130, 2006. View at Google Scholar
  74. Y. G. Zhong, N. Lin, S. Wang, and C. Liu, “Study on antioxidative and antimicrobial activities of Lentinan,” Food Science and Technology, vol. 7, 2007. View at Google Scholar
  75. K.-C. Siu, L. Xu, X. Chen, and J.-Y. Wu, “Molecular properties and antioxidant activities of polysaccharides isolated from alkaline extract of wild Armillaria ostoyae mushrooms,” Carbohydrate Polymers, vol. 137, pp. 739–746, 2016. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Liu, B. Zhang, S. A. Ibrahim, S.-S. Gao, H. Yang, and W. Huang, “Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue,” Carbohydrate Polymers, vol. 145, pp. 71–77, 2016. View at Publisher · View at Google Scholar · View at Scopus
  77. D. K. Manna, P. Maity, A. K. Nandi et al., “Structural elucidation and immunostimulating property of a novel polysaccharide extracted from an edible mushroom Lentinus fusipes,” Carbohydrate Polymers, vol. 157, pp. 1657–1665, 2017. View at Publisher · View at Google Scholar
  78. H. Zhang, S. W. Cui, S.-P. Nie, Y. Chen, Y.-X. Wang, and M.-Y. Xie, “Identification of pivotal components on the antioxidant activity of polysaccharide extract from Ganoderma atrum,” Bioactive Carbohydrates and Dietary Fibre, vol. 7, no. 2, pp. 9–18, 2016. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Chen, M.-Y. Xie, S.-P. Nie, C. Li, and Y.-X. Wang, “Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum,” Food Chemistry, vol. 107, no. 1, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Li, L. Li, J. C. Fang et al., “Isolation and identification of a novel polysaccharide-peptide complex with antioxidant, anti-proliferative and hypoglycaemic activities from the abalone mushroom,” Bioscience Reports, vol. 32, no. 3, pp. 221–228, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. J.-Y. Wu, X. Chen, and K.-C. Siu, “Isolation and structure characterization of an antioxidative glycopeptide from mycelial culture broth of a medicinal fungus,” International Journal of Molecular Sciences, vol. 15, no. 10, pp. 17318–17332, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. D. B. Jennings, M. Ehrenshaft, D. Mason Pharr, and J. D. Williamson, “Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 15129–15133, 1998. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Q. Zhang, Y. P. Pu, L. H. Yin, and W. J. Zhong, “Study on the scavenging effect on superoxide anion free radical and hydroxyl free radical of cordycep sinensis and mycelium of cultured cordyceps sinensis,” Chinese Journal of Gerontology, vol. 11, pp. 773–775, 2003. View at Google Scholar
  84. M. Haak-Frendscho, K. Kino, T. Sone, and P. Jardieu, “Ling Zhi-8: a novel T cell mitogen induces cytokine production and upregulation of ICAM-1 Expression,” Cellular Immunology, vol. 150, no. 1, pp. 101–113, 1993. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Zhu, Q. Chang, L. K. Wong, F. S. Chong, and R. C. Li, “Triterpene antioxidants from Ganoderma lucidum,” Phytotherapy Research, vol. 13, no. 6, pp. 529–531, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Kawagishi, F. Fukuhara, M. Sazuka, A. Kawashima, T. Mitsubori, and T. Tomita, “5′-deoxy-5′-methylsulphinyladenosine, a platelet aggregation inhibitor from Ganoderma lucidum,” Phytochemistry, vol. 32, no. 2, pp. 239–241, 1993. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Sugihara, T. Arakawa, M. Ohnishi, and K. Furuno, “Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid,” Free Radical Biology and Medicine, vol. 27, no. 11-12, pp. 1313–1323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Salah, N. J. Miller, G. Paganga, L. Tijburg, G. P. Bolwell, and C. Rice-Evans, “Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants,” Archives of Biochemistry and Biophysics, vol. 322, no. 2, pp. 339–346, 1995. View at Publisher · View at Google Scholar · View at Scopus
  89. X. Geng, G. Tian, W. Zhang et al., “A tricholoma matsutake peptide with angiotensin converting enzyme inhibitory and antioxidative activities and antihypertensive effects in spontaneously hypertensive rats,” Scientific Reports, vol. 6, Article ID 24130, 2016. View at Publisher · View at Google Scholar · View at Scopus
  90. R. M. Berne, “The role of adenosine in the regulation of coronary blood flow,” Circulation Research, vol. 47, no. 6, pp. 807–813, 1980. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Sa-ard, R. Sarnthima, S. Khammuang, and W. Kanchanarach, “Antioxidant, antibacterial and DNA protective activities of protein extracts from Ganoderma lucidum,” Journal of Food Science and Technology, vol. 52, no. 5, pp. 2966–2973, 2014. View at Publisher · View at Google Scholar · View at Scopus