Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017, Article ID 9840210, 11 pages
https://doi.org/10.1155/2017/9840210
Research Article

Evidence for Tissue Toxicity in BALB/c Exposed to a Long-Term Treatment with Oxiranes Compared to Meglumine Antimoniate

1Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
2Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
3Laboratório de Ultraestrutura e Biologia Tecidual, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard 28 de Setembro, No. 87, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
4Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
5Instituto de Biologia, Universidade Federal Fluminense, Outeiro São João Batista S/N, 24210-130 Niterói, RJ, Brazil
6Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista S/N, Centro, 24210-130 Niterói, RJ, Brazil
7Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil

Correspondence should be addressed to Carlos Roberto Alves; rb.zurcoif.coi@sevlac

Received 3 March 2017; Revised 19 May 2017; Accepted 1 June 2017; Published 17 July 2017

Academic Editor: Philippe Holzmuller

Copyright © 2017 Luiz Filipe Gonçalves Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO (World Health Organization), “Leishmaniasis. Fact sheet,” http://www.who.int/mediacentre/factsheets/fs375/en/.
  2. Organización Panamericana de la Salud. Leishmaniasis en las Américas: recomendaciones para el tratamiento.
  3. G. Vianna, “Tratamento da leishmaniose tegumentar por injeções intravenosas de tártaro emético,” Anais do VII Congresso Brasileiro de Medicina e Cirurgia4, vol. 4, pp. 426–428, 1912. View at Google Scholar
  4. A. K. Haldar, P. Sen, and S. Roy, “Use of antimony in the treatment of leishmaniasis: current status and future directions,” Molecular Biology International, vol. 2011, Article ID 571242, 23 pages, 2011. View at Publisher · View at Google Scholar
  5. B. L. Herwaldt and J. D. Berman, “Recommendations for treating leishmaniasis with sodium stibogluconate (pentostam) and review of pertinent clinical studies,” American Journal of Tropical Medicine and Hygiene, vol. 46, no. 3, pp. 296–306, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. L. F. Oliveira, A. O. Schubach, M. M. Martins, and etal., “Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World,” Acta Tropica, vol. 118, no. 2, pp. 87–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Faraut-Gambbarelli, R. Pioroux, M. Deniau, and etal., “Vitro resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis,” Antimicrob. Agents Chemother, vol. 41, pp. 827–830, 1997. View at Google Scholar
  8. R. Lira, S. Sundar, A. Makharia, and etal., “Evidence that incidence of treatment failure in Indian kala-azar is due to the emergence of antimony resistant strains of Leishmania donovani,” The Journal of Infectious Diseases, vol. 180, no. 2, pp. 564–567, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sundar, D. K. More, M. K. Singh, V. P. Singh, and etal., “Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic,” Clinical Infectious Diseases, vol. 31, no. 4, pp. 1104–1107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Mohapatra, “Drug resistance in leishmaniasis: newer developments,” Tropical Parasitology, vol. 4, pp. 4–9, 2014. View at Publisher · View at Google Scholar
  11. WHO (World Health Organization), “The world medicines situation,” Traditional Medicines: Global Situation, Issues and Challenges, 2011. View at Google Scholar
  12. L. F. G. de Oliveira, B. A. S. Pereira, B. Gilbert, and etal., “Natural products and phytotherapy: an innovative perspective in leishmaniasis treatment,” Phytochemistry Reviews, pp. 1–15, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. L. I. López López, D. S. Nery Flores, Y. S. Silva Belmares, and etal., “Naphthoquinones: biological properties and synthesis of lawsone and derivatives — a structured review,” Vitae, vol. 21, no. 3, pp. 248–258, 2014. View at Google Scholar · View at Scopus
  14. E. A. Hillard, F. C. De Abreu, D. C. M. Ferreira, and etal., “Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds,” Chemical Communications, no. 23, pp. 2612–2628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. G. De Paiva, F. R. Ferreira, T. L. Silva, and etal., “Electrochemically driven supramolecular interaction of quinones and ferrocifens: an example of redox activation of bioactive compounds,” Current Topics in Medicinal Chemistry, vol. 15, no. 2, pp. 136–162, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Babula, V. Adam, L. Havel, and etal., “Noteworthy secondary metabolites naphthoquinones - their occurrence, pharmacological properties and analysis,” Current Pharmaceutical Analysis, vol. 5, no. 1, pp. 47–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. J. Monks and D. C. Jones, “The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers,” Current Drug Metabolism, vol. 3, no. 4, pp. 425–438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. V. Pinto and S. L. De Castro, “The trypanocidal activity of naphthoquinones: a review,” Molecules, vol. 14, no. 11, pp. 4570–4590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. N. Lima, C. S. Correia, L. L. Leon, and etal., “Antileishmanial activity of lapachol analogues,” Memorias do Instituto Oswaldo Cruz, vol. 99, no. 7, pp. 757–761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Sharma, A. K. Shukla, M. Das, and etal., “Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of leishmania parasite,” Parasitology Research, vol. 110, no. 1, pp. 341–348, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. V. F. Ferreira, “Natural naphthoquinones with great importance in medicinal chemistry,” Current Organic Synthesis, vol. 13, no. 3, pp. 334–371, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. V. F. Ferreira, A. Jorqueira, A. Souza, and etal., “Trypanocidal agents with low cytotoxicity to mammalian cell line: a comparison of the theoretical and biological features of lapachone derivatives,” Bioorganic and Medicinal Chemistry, vol. 14, no. 16, pp. 5459–5466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. F. Carneiro, M. C. R. F. Pinto, R. K. Marra, and etal., “Synthesis and antimalarial activity of quinones and structurally-related oxirane derivatives,” European Journal of Medicinal Chemistry, vol. 108, pp. 134–140, 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. F. S. Silva, S. B. Nascimento, S. C. Bourguignon, and etal., “Evidences for leishmanicidal activity of the naphthoquinone derivative epoxy-α-lapachone,” Experimental Parasitology, vol. 147, pp. 81–84, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. F. S. Silva, S. C. Bourguignon, B. A. Pereira et al., “Epoxy-α-lapachone has in vitro and in vivo anti-leishmania (Leishmania) amazonensis effects and inhibits serine proteinase activity in this parasite,” Antimicrobial Agents and Chemotherapy, vol. 59, no. 4, pp. 1910–1918, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. S. C. Bourguignon, H. C. Castro, D. O. Santos, and etal., “Trypanosoma cruzi: in vitro activity of Epoxy-α-Lap, a derivative of α-lapachone, on trypomastigote and amastigote forms,” Experimental Parasitology, vol. 122, no. 2, pp. 91–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. F. Carneiro, S. B. Do Nascimento, M. C. Pinto, and etal., “New oxirane derivatives of 1,4-naphthoquinones and their evaluation against T. cruzi epimastigote forms,” Bioorganic and Medicinal Chemistry, vol. 20, no. 16, pp. 4995–5000, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Kumagai, Y. Shinkai, and T. Miura, “The chemical biology of naphthoquinones and its environmental implications,” Annual Review of Pharmacology and Toxicology, vol. 52, pp. 221–247, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. A. Kuryshev, L. Wang, and B. A. Wible, “Antimony-based antileishmanial compounds prolong the cardiac action potential by an increase in cardiac calcium currents,” Molecular Pharmacology, vol. 69, no. 4, pp. 1216–1225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. Moen, K. A. Lyseng-Williamson, and L. J. Scott, “Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections,” Drugs, vol. 69, no. 3, pp. 361–392, 2009. View at Publisher · View at Google Scholar · View at Scopus